АКАДЕМИЯ НАУК РЕСПУБЛИКИ ТАДЖИКИСТАН ИНСТИТУТ ХИМИИ имени В.И. НИКИТИНА

На правах рукописи

РАХИМОВ ХУРШЕД АБДУЛЛОЕВИЧ

ТВЕРДЫЕ РАСТВОРЫ НА ОСНОВЕ ВИСМУТИДОВ РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ ИТТРИЕВОЙ ПОДГРУППЫ

02.00.04 – физическая химия

ДИССЕРТАЦИЯ

на соискание ученой степени кандидата технических наук

Научный руководитель: Назарзода Хайрулло Холназар кандидат технических наук.

Научный консультант: Абулхаев Владимир Джалолович доктор химических наук, профессор

Душанбе- 2018

ОГЛА В Л Е Н И Е

В В Е Д Е Н И Е	5
ГЛАВА 1 СИНТЕЗ И ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА	
СПЛАВОВ И СОЕДИНЕНИЙ СИСТЕМ РЗЭ – ВИСМУТ	
(ОБЗОР ЛИТЕРАТУРЫ)	11
1.1 Диаграммы состояния систем РЗЭ – висмут	11
1.1.1. Диаграмма состояния системы Gd – Ві	11
1.1.2. Диаграмма состояния системы Tb – Bi	12
1.1.3. Диаграмма состояния системы Dy –Bi	13
1.1.4 Диаграммы состояния систем Ln – Bi (Ln = Ho, Er, Tm, Lu)	14
1.1.5 Диаграммы состояния других РЗЭ с висмутом	17
1.2 Соединения РЗЭ с висмутом	19
1.2.1 Соединения РЗЭ с висмутом типа Ln ₅ Bi ₃	19
1.2.2 Соединения РЗЭ с висмутом типа Ln ₄ Bi ₃	20
1.2.3 Соединения РЗЭ с висмутом типа LnBi	22
1.2.4 Соединения РЗЭ с висмутом других составов	22
1.3 Методы получения соединений и сплавов систем Ln – Bi	25
1.4. Электрофизические, магнитные, теплофизические и химические	
свойства висмутидов РЗЭ	26
1.4.1 Электрофизические и магнитные свойства соединений РЗЭ	
с висмутом	26
1.4.2 Теплофизические и химические свойства соединений РЗЭ	
с висмутом	30
1.5. Выводы по обзору литературы	32
ГЛАВА 2 СИНТЕЗ ТВЁРДЫХ РАСТВОРОВ СИСТЕМ	
Gd5Bi3 – Ln5Bi3 (Ln = Tb, Dy, Ho, Er, Tm, Lu) И МЕТОДЫ	
ФИЗИКО-ХИМИЧЕСКИХ ИССЛЕДОВАНИЙ	34
2.1 Синтез твердых растворов систем $Gd_5Bi_3 - Ln_5Bi_3$ (Ln = Tb, Dy, Ho,	
Er, Tm, Lu)	34
2.2 Методы физико-химических исследований	41

2.2.1 Дифференциальный термический анализ	41
2.2.2 Рентгенофазовый анализ	43
2.2.3 Микроструктурный анализ (МСА) и измерение микротвердост	ти43
2.2.4 Измерение плотности	44
2.2.5 Измерение удельного электросопротивления и термо-э.д.с. в	
диапазоне температур 298-773 К	44
2.2.6 Исследование магнитной восприимчивости в диапазоне	
температур 298-773 К	46
ГЛАВА З ДИАГРАММЫ СОСТОЯНИЯ, ЭЛЕКТРОФИЗИЧЕС	КИЕ
СВОЙСТВА ВИСМУТИДОВ Ln5Bi3 (Ln = Tb, Dy, Ho, Er, Tm	, Lu)
И ТВЁРДЫХ РАСТВОРОВ СИСТЕМ Gd5Bi3 – Ln5Bi3	
(Ln = Tb, Dy, Ho, Er, Tm, Lu)	48
3.1 Диаграммы состояния систем $Gd_5Bi_3 - Ln_5Bi_3$ (Ln = Tb, Dy, Ho, H	Er,
Tm, Lu)	
3.1.1 Диаграмма состояния системы Gd ₅ Bi ₃ – Tb ₅ Bi ₃	48
3.1.2 Диаграмма состояния системы Gd ₅ Bi ₃ – Dy ₅ Bi ₃	51
3.1.3 Диаграмма состояния системы Gd ₅ Bi ₃ – Ho ₅ Bi ₃	54
3.1.4 Диаграмма состояния системы Gd ₅ Bi ₃ – Er ₅ Bi ₃	54
3.1.5 Диаграмма состояния системы Gd ₅ Bi ₃ – Tm ₅ Bi ₃	59
3.1.6 Диаграмма состояния системы Gd ₅ Bi ₃ – Lu ₅ Bi ₃	62
3.2 Электрофизические свойства висмутидов Ln ₅ Bi ₃	
(Ln = Gd, Tb, Dy, Ho, Er, Tm, Lu) и твердых растворов систем	
$Gd_5Bi_3 - Ln_5Bi_3$ (Ln = Tb, Dy, Ho, Er, Tm, Lu)	65
3.3 Обсуждение результатов	65
ГЛАВА 4 МАГНИТНЫЕ СВОЙСТВА ВИСМУТИДОВ Ln5Bi3	
(Ln = Tb, Dy, Ho, Er, Tm, Lu) И ТВЕРДЫХ РАСТВОРОВ	
СИСТЕМ $Gd_5Bi_3 - Ln_5Bi_3$ (Ln = Tb, Dy, Ho, Er, Tm, Lu)	74
4.1 Результаты исследования магнитных свойств висмутидов	
Ln_5Bi_3 (Ln = Tb, Dy, Ho, Er, Tm, Lu) и твёрдых растворов	
систем $Gd_5Bi_3 - Ln_5Bi_3$ (Ln = Tb, Dy, Ho, Er, Tm, Lu)	74

4.1.1 Магнитные свойства висмутидов Ln_5Bi_3 (Ln = Gd, Tb, Dy,	
Но, Er, Tm, Lu) в диапазоне температур 298-773 К	74
4.1.2 Магнитные свойства твёрдых растворов систем Gd_5Bi_3 - Ln_5Bi_3	
(Ln= Gd, Tb, Dy, Ho, Er, Tm, Lu)	77
4.2 Обсуждение результатов	86
ВЫВОДЫ	90
ЛИТЕРАТУРА	92
ПРИЛОЖЕНИЯ	103

введение

Актуальность темы исследования.

Редкоземельные элементы (РЗЭ) сплавы и химические соединения на их основе применяются в различных отраслях техники: производстве стекла и керамики, черной металлургии, электроосветительной, атомной, лазерной технике, телевизионной, химической промышленности, медицине, сельском хозяйстве и других отрослях. Возможности их использования далеко не исчерпаны и расширяются по мере исследования свойств соединений и сплавов на их основе.

В последние годы расширились работы по поиску новых магнитных материалов на основе РЗЭ. Получены магнитные интерметаллиды YCo₅, SmCo₅, железо-редкоземельные гранаты, а также неодим-железо-боровый сплав (Nd₂Fe₁₄B), которые нашли применение в высокочастотной технике и электронных приборах.

В этом плане актуальными являются работы, связанные с получением и исследованием сплавов и соединений на основе РЗЭ.

Установлено, что соединения и сплавы РЗЭ иттриевой подгруппы с висмутом (висмутиды) проявляют магнитные свойства. Так, висмутиды РЗЭ Ln₅Bi₃ (Ln = Gd, Tb, Dy, Ho, Er, Tm, Lu) при комнатной температуре являются парамагнетиками. Это обеспечивает возможность получения, на основе указанных висмутидов, магнитных материалов с повышенными магнитными свойствами.

Поэтому выявление условий синтеза сплавов систем Gd₅Bi₃ - Ln₅Bi₃ (Gd, Tb, Dy, Ho, Er, Tm, Lu) и установление их физико-химической природы, является важной научной и практической задачей.

Степень разработанности темы.

Анализ литератуных источников свидетельствует о том, что среди сосоединений и сплавов РЗЭ с висмутом более подробно изучены моновисмутиды РЗЭ. Висмутиды других составов изучены весьма мало. При этом в научной литературе нет сведений по твердым растворам систем $Gd_5Bi_3 - Ln_5Bi_3$ (Ln = Tb, Dy, Ho, Er, Tm, Lu), которые являются объектами исследования в данной работе.

Цель и задачи работы.

Целью работы явилось синтез твердых растворов систем

 Gd_5Bi_3 - Ln_5Bi_3 (Ln = Tb, Dy, Ho, Er, Tm, Lu), установление их физикохимической природы и получение материалов, проявляющие повышенные магнитные свойства, относительно висмутидов Ln_5Bi_3 (Ln = Tb, Dy, Ho, Er, Tm, Lu).

Для достижения поставленной цели необходимо было решить следующие задачи:

- исследовать взаимодействие РЗЭ (Gd, Tb, Dy, Ho, Er, Tm, Lu) с висмутом и Gd₅Bi₃ с Ln₅Bi₃ (Ln = Tb, Dy, Ho, Er, Tm, Lu), в процессе образования твердых растворов Gd_{5-x}Ln_xBi₃ (Ln = Tb, Dy, Ho, Er, Tm, Lu; x = $0.5 \div 4.5$);

- разработать методику синтеза висмутидов LnBi, Ln₅Bi₃ (Ln =Gd, Tb, Dy, Ho, Er, Tm, Lu) и твердых растворов $Gd_{5-x}Ln_xBi_3$ (Ln = Tb, Dy, Ho, Er, Tm, Lu; x = $0.5 \div 4.5$);

- провести аттестацию синтезированных висмутидов LnBi, Ln₅Bi₃ (Ln =Gd, Tb, Dy, Ho, Er, Tm, Lu) и твердых растворов $Gd_{5-x}Ln_xBi_3$ (Ln = Tb, Dy, Ho, Er, Tm, Lu; x = 0.5÷4.5);

- на основании данных физико-химического анализа построить диаграммы состояния систем Gd₅Bi₃ – Ln₅Bi₃ (Ln = Tb, Dy, Ho, Er, Tm, Lu);

- построить концентрационные зависимости электрофизических свойств (удельного электросопротивления, термо-э.д.с.) и микротвердости твёрдых растворов систем Gd_5Bi_3 - Ln_5Bi_3 (Ln = Tb, Dy, Ho, Er, Tm, Lu) при комнатной температуре;

- иследовать температурную зависимость электрофизических свойств (удельного электросопротивления, термо-э.д.с.) и молярной магнитной восприимчивости висмутидов Ln₅Bi₃ и твердых растворов Gd_{5-x}Ln_xBi₃ в диапазоне температур 298-773 К.

Научная новизна работы:

- разработаны научно-обоснованные методы синтеза висмутидов Ln₅Bi₃ (Ln = Gd, Tb, Dy, Ho, Er, Tm, Lu) и твердых растворов $Gd_{5-x}Ln_xBi_3$ (Ln = Tb, Dy, Ho, Er, Tm, Lu; x = $0.5 \div 4.5$);

- исследования диаграмм состояния систем Gd_5Bi_3 - Ln_5Bi_3 (Ln = Tb, Dy, Ho, Er, Tm, Lu) позволилили установить закономерность в их строении, которая проявляется в образовании изоструктурного ряда твердых растворов замещения $Gd_{5-x}Ln_xBi_3$ (Ln = Tb, Dy, Ho, Er, Tm, Lu; x = $0.5\div4.5$) и однотипности систем;

- определены эффективные магнитные моменты ионов РЗЭ, парамагнитные температуры Кюри, характер проводимости и оценен тип магнитного упорядочения висмутидов Ln_5Bi_3 (Ln = Gd, Tb, Dy, Ho, Er, Tm, Lu) и твердых растворов $Gd_{5-x}Ln_xBi_3$ (Ln = Tb, Dy, Ho, Er, Tm, Lu); x = 0.5÷4.5);

- получены твердые растворы Gd_{5-x}Ln_xBi₃ (Ln = Tb, Dy, Ho, Er, Tm, Lu; x = 0.5÷4.5), обладающие повышенными магнитными свойствами.

Теоретическая и практическая значимость работы.

Теоретические аспекты интерпретации данных по синтезу висмутидов Ln₅Bi₃ (Ln = Tb, Dy, Ho, Er, Tm, Lu), твердых растворов систем Gd₅Bi₃ – Ln₅Bi₃ (Ln = Tb, Dy, Ho, Er, Tm, Lu), электрофизическим и магнитным их свойствам можно использовать для объяснения физико-химических свойств других соединений и сплавов РЗЭ с висмутом.

Практическая значимость работы заключается в следующем:

- висмутиды Ln₅Bi₃ (Ln = Gd, Tb, Dy, Ho, Er, Tm, Lu) и твердые растворы Gd_{5-x}Ln_xBi₃ (Ln = Tb, Dy, Ho, Er, Tm, Lu; $x = 0.5 \div 4.5$) могут найти применение в криогенной и электронной технике;

- данные по физико-химическим, электрофизическим, магнитным свойствам висмутидов Ln_5Bi_3 (Ln = Tb, Dy, Ho, Er, Tm, Lu), твердым растворам $Gd_{5-x}Ln_xBi_3$ (Ln = Tb, Dy, Ho, Er, Tm, Lu; x = 0.5÷4.5) и диаграммам состояния систем Gd_5Bi_3 - Ln_5Bi_3 (Ln = Tb, Dy, Ho, Er, Tm, Lu), являются справочным материалом. Этими данными могут пользоватся аспиранты и научные сотрудники, в процессе выполнения научных работ. Кроме того, материалы данной диссертационной работы могут использоваться и в учебном процессе при чтении лекций по физической, неорганической химии, физико-химическому анализу и материаловедению.

Положения, выносимые на защиту:

- физико-химическое взаимодействие РЗЭ с висмутом в процессе образования висмутидов Ln_5Bi_3 (Ln = Gd, Tb, Dy, Ho, Er, Tm, Lu) и твёрдых растворов $Gd_{5-x}Ln_xBi_3$ (Ln = Tb, Dy, Ho, Er, Tm, Lu; x = $0.5 \div 4.5$);

- методы получения висмутидов LnBi, Ln₅Bi₃ (Ln = Gd, Tb, Dy, Ho, Er, Tm, Lu) и твердых растворов $Gd_{5-x}Ln_xBi_3$ (Ln = Tb, Dy, Ho, Er, Tm, Lu; $x = 0.5 \div 4.5$);

- результаты исследования диаграмм состояния систем Gd_5Bi_3 - Ln_5Bi_3 (Ln = Tb, Dy, Ho, Er, Tm, Lu) и закономерности, проявляющиеся в их строении;

- электрофизические и магнитные свойств висмутидов Ln_5Bi_3 (Ln = Gd, Tb, Dy, Ho, Er, Tm, Lu) и твердых растворов $Gd_{5-x}Ln_xBi_3$ (Ln = Tb, Dy, Ho, Er, Tm, Lu; x = 0.5÷-4.5).

Степень достоверности и апробация результатов.

Достоверность полученных результатов подтверждается их воспроизводимостью и использованием в работе независимых методов физико-химического анализа.

Основные результаты работы доложены на: VI Нумановских чтениях (г. Душанбе, 2009 г.); республиканской научно-технической конференции «Современные проблемы химии, химической технологии и металлургии» (г. Душанбе, 2009 г.); областной научно-теоретической. конференции, посвящённой «Году образования и технической культуры» (г. Курган-Тюбе, 2010 г.); республиканской научно-теоретической конференция молодых учёных Таджикистана, посвященной 20 –летию 16-ой сессии Верховного Совета Республики Таджикистан (г.Душанбе, 2012 г.); республиканской научно-теоретической конференция молодых научно-теоретической конференции. технической подготовки преподавателей технологии», посвященной 35летию образования кафедры «Технической механики и черчения» ТГПУ им. С. Айни и 20-летию образования национальной армии (г. Душанбе, 2013 г.); международной научно-практической конференции «Комплексный подход к использованию переработке угля» (г. Душанбе, 2013 г.); республиканской научно-практической конференции «Перспективы синтеза в области химии и технологии гетеросоединений», посвященной 20-летию кафедры высокомолекулярных соединений и химической технологии ТНУ (г. Душанбе, 2013) г.); республиканской научно-теоретической конференции: «Новые методы обучения технологических дисциплин в инновационном процессе» (г. Душанбе, 2013 г.); международной конференции: «Комплексные соединения и аспекты их применения» (г. Душанбе, 2013 г.); республиканской научной конференции на тему «Химия, технология и экология воды», посвященной году «Сотрудничество по водной проблеме» и 55-летию кафедры «Общая и неорганическая химия, ТГПУ им. С.Айни» (г. Душанбе, 2013 г.); республиканской научной конференции на тему: «Экология и вопросы обучения и воспитания», посвященной 70- летию заведующего кафедрой «Химическая технология и экология» ТГПУ им. С. Айни, доцента Шарипова И.Н. (г. Душанбе, 2014 г.); республиканской конференции «Применение современных технических средств в обучение предмета технологии», посвященной 20 летию конституции Республики Таджикистан (г. Душанбе, 2015 г.); апрельской конференции профессорско-преподавательского состава ТНУ (г. Душанбе, 2016 г.).

Публикации. По результатам исследований опубликовано 37 работ, включая 6 статей в рецензируемых журналах, входящих в перечень ВАК РФ, а также получено три малых патента Республики Таджикистан.

Вклад автора заключался в анализе научной литературы по тематике диссертационной работы, решение задач исследований, выполненных в соавторстве, определение путей решения поставленных задач, обработке экспе-

риментальных данных, формулировке основных положений и выводов диссертации.

<u>Структура и объем диссертации.</u> Диссертация изложена на 126 страницах компьютерного набора, состоит из введения, четырех глав, выводов, библиографического списка, включающего 115 наименований и приложений. Диссертация содержит 43 рисунков, 20 таблиц и 24 страниц приложений.

ГЛАВА 1 СИНТЕЗ И ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА СПЛАВОВ И СОЕДИНЕНИЙ СИСТЕМ РЗЭ – ВИСМУТ (ОБЗОР ЛИТЕРАТУРЫ)

1.1 Диаграммы состояния систем РЗЭ – висмут

Согласно литературным данным, в настоящее время, в полном диапазоне концентраций исследованы четырнадцать диаграммы состояния систем P3Э – Bi: La – Bi, Ce – Bi, Pr – Bi, Nd – Bi, Sm – Bi, Y – Bi, Gd – Bi, Tb – Bi, Dy – Bi, Ho – Bi, Er – Bi, Tm – Bi, Yb – Bi, Lu – Bi.

В данном разделе отдельно приводятся диаграммы состояния систем РЗЭ иттриевой подгруппы с висмутом, в которых образуются висмутиды Ln_5Bi_3 (Ln = Gd, Tb, Dy, Ho, Er, Tm, Lu), проявляющие магнитные свойства [1]. На основании этих висмутидов в данной диссертационной работе получены и исследованы твёрдые растворы $Gd_{5-x}Ln_xBi_3$ (Ln = Tb, Dy, Ho, Er, Tm, Lu; (x=0.4-4.5), образующихся в соответсвующих им системах.

1.1.1 Диаграмма состояния системы Gd – Bi

Гипотетическая диаграмма состояния системы Gd – Ві приведена в [2]. Указывается на образование в системе соединений Gd₂Bi, Gd₄Bi₃, и GdBi.

Соединения Gd_2Bi и Gd_4Bi_3 при 1548 и 1793 К, соответственно, образуются по перитектическим реакциям. GdBi при 2073 К плавится с открытым максимумом. По данным другой работы [3] это соединение плавится при 2047 К.

Результаты работ [4, 5, 6] не подтверждают образование в системе соединения Gd₂Bi. В [4] указывается на образование в системе, кроме соединений Gd₄Bi₃ и GdBi, еще и соединений Gd_{5+x}Bi₃ и Gd₅Bi₃.

В [7, 8] диаграмма состояния системы Gd – Ві в полном диапазонене концентраций изучена методами дифференциального термического, рентгенофазового, металлографического и химического анализов. Показано образование в системе четырех химических соединений (рисунок 1.1). Соедине-

Рисунок 1.1 - Диаграмма состояния системы Gd – Bi [8].

ния Gd_5Bi_3 , Gd_4Bi_3 , и $GdBi_2$ при 1753±10, 1853±15 и 1183±10 К, соответственно, образуются по перитектическим реакциям. Самым угоплавким соединением является GdBi, которое при 2043 К плавится с открытым максимумом.

В системе Gd – Ві эвтектический сплав в точке е₁ содержит 15±1 ат. % Ві., а в точке е₂ 99.7 ат. % Ві.

В [8] впервые установлено образование в системе Gd – Ві соединения GdBi₂, при этом не подверждено образование в системе соединений Gd₂Bi и Gd_{5+x}Bi₃, о которых сообщается в [2, 4].

1.1.2 Диаграмма состояния системы Tb – Ві

В [9, 10] данная диаграмма состояния построена с привлечением дифференциального термического, рентгенофазового и металлографического анализов (рисунок 1.2).

Указывается на образование в системе соединений α-Tb₅Bi₃, Tb₄Bi₃,

Рисунок 1.2 -Диаграмма состояния системы Tb – Bi [10].

ТbBi, а также на вероятность образования соединения TbBi₂.

 α -Tb₅Bi₃ и Tb₄Bi₃ при 1763 и1873 К, соответственно, образуются по перитектическим реакциям. TbBi при 2033 К TbBi плавится с открытым максимумом. Установлено, что соединение α -Tb₅Bi₃ проявляет полиморфизм. Высокотемпературная модификация β -Tb₅Bi₃ существует при 1683 К и выше.

В точке е₁ эвтектический сплав содержат 17 ат. % Ві, а в точке е₂ 99.8 ат. % Ві.

1.1.3 Диаграмма состояния системы Dy- Bi

Диаграмма состояния системы Dy – Bi, построенная по совокупности данных физико-химического анализа [11, 12], показана на рисунке 1.3. В системе идентифицированы два соединения - Dy₅Bi₃ и DyBi. Соединение Dy₅Bi₃ при при 1723 К образуется по перитектической реакции:

$$\mathfrak{K}_{p2} + \mathrm{DyBi} \longleftrightarrow \mathrm{Dy}_5\mathrm{Bi}_3.$$

Рисунок 1.3 - Диаграмма состояния системы Dy-Bi [12].

DyBi при 2020 К плавится с открытым максимумом.

Эвтектика (e₁) с концентрацией 19 ат. % Ві и этектика (e₂) с концентрацией 99,8 ат.% Ві проявляются при температуре 1423 и 542 К, соответственно.

Следует отметить, что в [11, 12] не указывается на образование в системе соединения Dy₃Bi₂. Это соединение не зафиксировано и в [4, 12, 13].

1.1.4 Диаграммы состояния систем Ln – Bi (Ln = Ho, Er, Tm, Lu)

Диаграммы состояния указанных систем, изученных в [14-19], приведены на рисунке 1.4-1.7. Как видно из рисунков, диаграммы сотояния систем Ln - Bi (Ln = Ho, Er, Tm, Lu) качественно не отличаются друг от друга. Во всех системах образуются по два соединения $-Ln_5Bi_3$ и LnBi (Ln = Ho, Er, Tm, Lu). Соединения Ln_5Bi_3 (Ln = Ho, Er, Tm, Lu) при 1693,1703, 1688, и

Рисунок 1.4 -Диаграмма состояния системы Но – Ві [15].

Рисунок 1.5 - Диаграмма состояния системы Er – Bi [17].

Рисунок 1.6 - Диаграмма состояния системы Tm – Bi [18].

Рисунок 1.7 - Диаграмма состояния системы Lu – Bi [19].

1723 К, соответственно, образуются по перитектическим реакциям:

 $\mathfrak{K}_{\mathfrak{p}2}$ + LnBi $\leftarrow \rightarrow$ Ln₅Bi₃ (Ln = Ho, Er, Tm, Lu)

Взаимная растворимость РЗЭ и висмута во всех диаграммах состояния составляет менее 1 ат.%. При этом концентрация эвтектического сплава (e₁) колеблется в пределах 18-21 ат. % Ві. Этектика со стороны висмута на диаграммах состояниях вырождена и содержит 99.7-99.8 ат% Ві.

Следует отметить, что в [14-19] отмечается вероятность образования в системах Ln – Ві дивисмутидов типа LnBi₂.

1.1.5 Диаграммы состояния других РЗЭ с висмутом

В [20] исследована диаграмма состояния системы La – Bi. Установлено существование в системе соединений La₂Bi, La₅Bi₃, La₄Bi₃, LaBi и LaBi₂. La₂Bi, La₅Bi₃, LaBi и LaBi₂ при 1525, 1623, 1888 и 1205 К, соответственно, образуются по перитектическим реакциям. La₄Bi₃ при 1943 К плавится конгруэнтно.

Эвтектика со стороны лантана проявляется при концентрации 21.5 ат. % Ві, при температуре 1096 К, а со стороны висмута эвтектика вырождена.

По данным [21, 22] первоначально система Се – Ві была иследована Фогелем методами термического и микроструктурного анализов. В системе идентифицированы соединения Се₃Ві, Се₄Ві₃, СеВі и СеВі₂, плавящиеся, за исключением соединения Се₄Ві₃, при 1673, 1798 и 1183 К, соответственно, инконгруэнтно. Соединение Се₄Ві₃ при 1903 К плавится конгруэнтно.

При исследовании участка системы Ce – Ві диапазона концентраций 76-100 ат. % Ві в [22] было установлено образование соединения CeBi₃. Приэтом в других работах [4, 23, 24] существование этого соединения в системе не подтвердилось.

Система Pr – Ві была иследована в [25]. Установлено существование в ней соединений Pr_2Bi , Pr_5Bi_3 , Pr_4Bi_3 , PrBi и $PrBi_2$, которые, за исключением PrBi, при 1408, 1663, 1908 и 1083 К, соответственно, плавятся инконгруэнтно. Самым тугоплавким соединением системы является PrBi, плавящиеся при 2093 К конгрузнтно.

Согласно расчету по методике [26], концентрация эвтектики со стороны висмута составляет 99.7 ат. % Ві, а со стороны празеодима 12 ат. % Ві.

Система Nd – Ві первоначально была исследована в [27, 28]. По данным [27] в системе образуются соединения Nd₃Bi, Nd₅Bi₃, Nd₄Bi₃ и NdBi₂, плавящиеся при 1423, 1493, 2023 и 1873 К, соответственно, инконгруэнтно, а также соединение NdBi, которое при 2173 К плавится конгруэнтно.

Позже в [28], существование в системе соединения Nd₃Bi не подтвердилось.

Диаграмма состояния Nd – Ві в полном диапазоне концентраций была изучена в [29-31], где подверждено образование в системе соединений Nd₂Bi, Nd₅Bi₃, Nd₄Bi₃, NdBi и NdBi₂, о которых сообщается в [27, 28].

В [32] методами термического, рентгенофазового и металлографичкеского анализов построена диаграмма сост Sm – Bi состояния системы Sm – Bi. В системе идентифицированы соединения Sm₂Bi, Sm₅Bi₃, Sm₄Bi₃, и SmBi₂, плавящиеся при 1570, 1870, 1970 и 1685 К, соответственно, инконгруэнтно и соединение SmBi, плавящиеся при 2090 К конгруэнтно. По данным других авторов [3, 33] это соединение при 1843 К плавится инконгруэнтно.

Следует отметить, что диаграмма состояния системы Sm – Sb исследованная в [34], качественно не отличается от диаграммы состояния системы Sm – Bi, построенной в [32]. Сходство двух диаграмм проявляется в том, что как в системе Sm – Sb, так и в системе Sm – Bi образуются одни и те же типы соединений.

Диаграмму состояния системы Y – Ві изучали в [35]. Идентифицированы два соединения - Y₅Bi₃ и YBi. Y₅Bi₃ при 1803 К образуется по перитектической реакции:

YBi при 2293 К плавится с открытым максимумом. Взаимная растворимость иттрия и висмута составляет не более 1 ат.%. Данные [35] подтверждают и

и результаты работы [36].

Впервые диаграмму состояния системы Yb – Bi исследовали в [37], где выявлено существование в системе соединений Yb₅Bi₂, Yb₅Bi₃ Yb₄Bi₃ Yb₅Bi₄ и YbBi₂. Среди указанных соединений Yb₄Bi₃ и YbBi₂ при 1773 и 973 К, соответственно, плавятся конгруэнтно. Остальные соединения - Yb₅Bi₂, Yb₅Bi₃ и Yb₅Bi₄ при 1558, 1673, 1608 К, соответственно, плавятся инконгруэнтно.

В [38] диаграмма состояния системы Yb – Ві была исследована еще раз. Не подтвердилось образование в системе соединения Yb₅Bi₂. При этом найдены соединения Yb₂Bi и Yb₁₁Bi₁₀, о которых не сообщается в [37],

Методами термического, рентгенофазового и микроструктурного анализов в [39] исследовали диаграммы состояния систем $Gd_4Bi_3 - Ln_4Bi_3$ (Ln = Pr, Nd, Tb). Согласно результатам проведенных анализов, во всех системах образуется изоструктурнй ряд твердых растворов замещения $Gd_{4-x}Ln_xBi_3$ (Ln= Pr, Nd, Tb); (x = 0.4-3.6), кристаллизующихся в кубической структуре типа анти-Th₃P₄.

На рис.1.8, для примера, приведена диаграмма состояния системы Gd₄Bi₃ – Tb₄Bi₃.

1.2 Соединения РЗЭ с висмутом

В системах РЗЭ – висмут в основном образуются висмутиды типа Ln₅Bi₃, Ln₄Bi₃, LnBi и LnBi₂ (Ln – ион РЗЭ), кристаллизующихся в разных структурах.

1.2.1 Соединения РЗЭ с висмутом типа Ln₅Bi₃

Висмутиды типа Ln₅Bi₃ образуются как в системах РЗЭ цериевой подгруппы, так и в системах РЗЭ иттриевой подгруппы с висмутом. Все известные висмутиды РЗЭ цериевой подгрупппы кристаллизуются в гексагональной структуре типа Mn_5Si_3 [4, 12, 25, 27, 28, 31]. Исключение составляет висмутид европия - Eu₅Bi₃, кристаллизующийся в ромбической сингонии типа анти- U₃S₅ [40].

По данным [4] Gd₅Bi₃ и Tb₅Bi₃, могут кристаллизоватся в двух структу-

Рисунок 1.8 -Диаграмма состояния системы Gd₄Bi₃ –Tb₄Bi₃ [39].

Pax - в гексагональный тип Mn₅Si₃ и ромбической типа Y₅Bi₃[4], в зависимости от концентрации в них гадолиния и тербия.

В диапазоне концентраций 25-33.3 ат. % Ві систем РЗЭ иттриевой подгруппы с висмутом, кроме систем иттербия и лютеция с висмутом, собщается об образовании в них висмутидов типа $Ln_{5+x}Bi_3$, кристаллизующихся в ромбической сингонии типа Y_5Bi_3 [4]. Образование зтих висмутидов в последующих работах [7, 10, 17, 18, 19, 22, 32] не нашло подтверждения.

Связь между структурами Y₅Bi₃, Mn₅Si₃ и Yb₅Sb₃. рассматривается в [41].

В таблице 1.1 приведены значения параметров элементарной ячейки соединений РЗЭ типа Ln₅Bi₃.

1.2.2 Соединения РЗЭ с висмутом типа Ln₄Bi₃

Образование соединений типа Ln₄Bi₃ преимущественно свойственно в системах РЗЭ цериевой подгруппы с висмутом [2, 4, 23, 25, 30, 42]. В системах РЗЭ иттриевой подгруппы с висмутом только в трех системах- Gd – Bi,

Висмутиды	Параметры элементарной ячейки, нм			Литература
РЗЭ	a	b	с	
Гексагональная структура типа Mn ₅ Si ₃				
La ₅ Bi ₃	0.96585		0.66970	[4]
	0.9614		0.6694	
Ce ₅ Bi ₃	0.95313		0.65871	[4]
Pr ₅ Bi ₃	0.94495		0.65553	[4]
	0.9452		0.6542	[25]
Nd ₅ Bi ₃	0.93696		0.65126	[4]
	0.9370		0.6528	[31]
Sm ₅ Bi ₃	0.930		0.648	[32]
β- Tb ₅ Bi ₃	0.91006		0.63651	[4]
	0.9112		0.6364	[10]
	Ромбическая	структура тип	а анти – U ₃ S ₅	
Eu ₅ Bi ₃	1.31522	1.01219	0.87544	[40]
	Ромбичес	кая структура	гипа Y ₅ Bi ₃	
Y ₅ Bi ₃	0.8179	0.9401	1.1957	[35]
Gd ₅ Bi ₃	0.8230	0.9526	1.2110	[8]
α -Tb ₅ Bi ₃	0.8202	0.9482	1.1988	[10]
Dy ₅ Bi ₃	0.8153	0.9412	1.1956	[22]
Ho ₅ Bi ₃	0.8114	0.9360	1.1873	[15]
Er ₅ Bi ₃	0.8090	0.9340	1.1813	[17]
Tm ₅ Bi ₃	0.8061	0.9286	1.1724	[18]
Lu ₅ Bi ₃	0.8046	0.9768	1.1718	[19]

типа Ln₅Bi₃

Тb – Bi и Yb – Bi образуются висмутиды Ln₄Bi₃ [8, 10, 37]. Висмутиды Ln₄Bi₃ РЗЭ цериевой и иттриевой подгруппы кристаллизуются в одной структуре – кубической типа анти-Th₃P₄ (пр. груп. I43d, Z=4) [40-44].

Значения параметров элементарной ячейки соединений типа Ln₄Bi₃ представлены в таблице 1.2.

Таблица	1.2 -	Значения	парамет	ров элемента	рной яч	ейки сое	динений l	РЗЭ
,					1		, ,	

Висмути-	Параметр	Литера-	Висмути-	Параметр	Лите-
ды РЗЭ	элементар-	тура	ды РЗЭ	элементарной	ратура
	ной ячейки			ной ячейки	
	а, нм			а, нм	
	Кубическая	я структур	а типа анти	-Th ₃ P ₄	
La ₄ Bi ₃	0.9759	[2]	Sm ₄ Bi ₃	0.9490	[32]
	0.9768	[4]		0.98167	[23]
Ce ₄ Bi ₃	0.9640	[2]	Gd ₄ Bi ₃	0.9383	[43]
	0.96736	[4]		0.9382	[8]
Pr ₄ Bi ₃	0.9611	[23]	Tb ₄ Bi ₃	0.93215	[23]
	0.9622	[2]		0.9316	[10]
Nd ₄ Bi ₃	0.95541	[4]	Yb ₄ Bi ₃	0.952	[2]
	0.9552	[31]		0.9312	[23]

типа Ln₄Bi₃

1.2.3 Соединения РЗЭ с висмутом типа LnBi

Моновисмутиды –LnBi, среди висмутидов РЗЭ разных составов, являются самыми изученными соединениями [45-57]. Много работ исследованию кристаллохимии моновисмутидов посвятил Ианделли [45-48]. Определено, что, за исключением европия и иттербия, все РЗЭ с висмутом образуют моновисмутиды – LnBi.

Кристаллическая решетка моновисмутидов -кубическая типа NaCl (пр. груп. Fm3m, Z = 4) [58].

Значения параметров элементарной ячейки соединений РЗЭ типа LnBi приведены в таблице. 1.3.

1.2.4 Соединения РЗЭ с висмутом других составов

В [22, 27] указывается об образовании в системах Се - Bi и Nd - Bi coe-

Таблица 1.3 – Значения параметров элементарной ячейки соединений РЗЭ

Висмути-	Параметр	Литера-	Висмути-	Параметр	Лите-
ды РЗЭ	элементар-	тура	ды РЗЭ	элементарной	ратура
	ной ячейки			ячейки	
	а, нм			а, нм	
	Кубиче	ская струк	тура типа N	NaCl	T
ScBi	0.5954	[52]	GdBi	0.6316	[53]
				0.6300	[8]
LaBi	0.6578	[54]	TbBi	0.6280	[54]
	0.6250	[57]		0.6281	[10]
CeBi	0.6500	[54]	DyBi	0.6251	[54]
				0.6272	[21]
PrBi	0.6461	[53]	HoBi	0.6228	[54]
	0.6465	[2]		0.6226	[21]
NdBi	0.6428	[27]	ErBi	0.6202	[54]
	0.6424	[28]		0,6186	[17]
SmBi	0.6380	[32]	TmBi	0.6190	[57]
	0.6370	[57]		0.6186	[18]
YBi	0.6233	[52]	LuBi	0.6120	[57]
	0.6259	[53]		0.6188	[19]

типа LnBi

динений Ce₃Bi и Nd₃Bi. Образование этих соединений в указанных системах в [4,24,28-31] не подвердилось.

В системах РЗЭ цериевой подгруппы с висмутом выявлено образование соединений типа Ln₂Bi [2, 4, 27, 59, 60]. При этом образование соединения этого типа в системах РЗЭ иттриевой подгруппы с висмутом установлено лишь в системе Yb – Bi [37, 38]. По данным этих работ Yb₂Bi кристаллизуется в тетрагональной структуре типа Cu₂Sb (таблица 1.4).

Соединения типа Ln₂Bi РЗЭ цериевой подруппы, в отличие от Yb₂Bi, кристаллизуются в тетрагональной структуре типа Ti₂P [42], (таблица 1.4.).

Таблица 1.4 - Параметры элементарной ячейки соединений РЗЭ с висмутом разных типов

Висмутиды	Параметры	Литература		
P3. 3	a	b c		
	Тетрагонал	ьная структура	а типа Ti ₂ P	•
La ₂ Bi	0.4674		1.8390	[35]
	0.4637		1.83952	[4]
Ce ₂ Bi	0.4511		1.81539	[4,13]
Pr ₂ Bi	0.45872		1.80107	[4]
	0.4602		1.7988	[25]
Nd ₂ Bi	0.45619		1.78698	[4]
	0.4542		1.7872	[31]
Sm ₂ Bi	0.452		1.760	[32]
	Тетрагональн	ная структура т	гипа Но ₁₁ Ві ₁₀	1
Yb ₁₁ Bi ₁₀	1.26103		1.82598	[39]
	Ромбическ	ая структура т	ипа LnSb ₂	
LaBi ₂	0.4737	1.751	0.4546	[35]
	0.65748	1.1398	1.19762	[4]
CeBi ₂	0.6528	1.30171	1.18218	[4]
PrBi ₂	0.65096	1.30564	1.18218	[4]
	0.6512	1.3022	1.1821	
NdBi ₂	0.64682	1.29796	1.18576	[4]
	0.6470	1.2982	1.1864	[31]
SmBi ₂	0.6420	1.280	1.164	[32]

По данныым [37] в системе Yb – Ві образуется висмутид Yb₅Bi₄, который кристаллизуется в ромбической структуре собственного типа. При этом в [37] не приведены значения парметров элементарной ячейки Yb₅Bi₄.

Известно соединение Yb₁₁Bi₁₀, кристаллизующиеся в тетрагональной структуре типа Ho₁₁Bi₁₀ (таблица.1.4). Это соединение образуется только в системе Yb – Bi [38].

Соединения типа LnBi₂ в основном образуются в системах РЗЭ цериевой подгруппы с висмутом [4, 61] (таблица. 1.4). В [8, 10, 15, 17-19] предполагается образование соединений типа LnBi₂ и в системах РЗЭ иттриевой подгруппы с висмутом.

1.3 Методы получения соединений и сплавов систем Ln - Bi

Обзор научной литературы указывает на то, что соединения и сплавы систем Ln – Ві преимущественно получали ампульным методом или сплавлением компонентов –РЗЭ и висмута. Так, в [50-54, 56, 61] все соединения РЗЭ типа LnBi получены ампульным методом. Синтез проводили следующим образом. Смесь стружек РЗЭ с висмутом стехиометрического состава 1:1 помещали в ампулу из кварца, которую вакуумировали, а затем подвергали медленному нагреванию до температур 773-973 К. Далее, для гомегенизации полученного продукта его подаергали отжигу при 1273-1723 К. Гомогенизирующий отжиг проводили в двойных ампулах. В качестве геттера использовали титан.

В [32] ампульным методом были синтезированы и сплавы системы Sm – Bi.

В [62, 63] несколько иным способом получены соединения типа Ln₄Bi₃ (Ln = Gd, Tb, Dy). Смесь стружек РЗЭ и висмута стехиометрического состава (57.5 at% Ln и 42.86 at% Bi) спрессовывали, помещали в танталовый тигель и нагревали до 673-773 К. Затем для получения гомогенных образцов их подвергали отжигу при 1673-1873 К.

В [39] прямым взаимодействием РЗЭ и висмута в герметизированных тиглях из молибдена получены соединения и сплавы систем Ln - Bi (Ln = Pr, Nd, Gd, Tb). Синтез проводили следующим образом. Исходные компоненты – РЗЭ (Pr, Nd, Gd, Tb) и висмут в виде стружек, взятые в определённом стехиометрическом соотношении, спрессовывали и подвергали нагреванию в герметизированных молибденовых тигелях до 923-1723 К со скоростью нагревания и охлаждения 10 К/мин., с последующей выдержкой при этих температурах в течение 2.5-4 часов.

В [39] разработан и способ получения твердых растворов Gd_{4-x}Ln_xBi₃, (x=0.4-3.6) систем Gd₄Bi₃ - Ln₄Bi₃, где в качестве исходных компонентов используются предварительно синтезированные соединения Ln₄Bi₃ (Ln = Pr, Nd, Gd, Tb).

Соединения и сплавы систем Ln - Ві получены также путём сплавлением исходных компонентов. Например, сплавы системы Y – Ві, диапазона концентраций до 30 ат. % Ві, получали сплавлением в герметичных танталовых тиглях стружек иттирия и висмута [35,36].

В [27] соединения и сплавы системы Nd – Ві получали сплавлением исходных компонентов в среде очищенного аргона под давлением 140 кПа, в электродуговой печи.

В [4, 6, 23, 60] соединения типа Ln₅Bi₃ и Ln₄Bi₃, также получены сплавлением исходных компонентов в электродуговой печи.

В [8, 10, 15, 17-19], при исследовании диаграмм состояния систем Ln – Bi (Ln = Gd, Tb, Ho, Er, Tm, Lu), сплавы получали спеканием стружек исходных компонентов, с последующим гомогенизирующим отжигом.

1.4 Электрофизические, магнитные, теплофизические и химические свойства соединений систем Ln – Bi

Обзор научной литературы показывает, что среди соединений РЗЭ с висмутом наиболее полно изучены физико-химические свойства соединений типа LnBi. Физико-химические свойства других типов соединений РЗЭ с висмутом изучены крайне мало.

1.4.1 Электрофизические и магнитные свойства соединений РЗЭ с висмутом

В [57, 64, 65, 66, 67, 68, 69] исследовали электрофизические свойства соединений РЗЭ с висмутом типа LnBi. Определено, что этим соединениям

свойственна маталлическая проводимость.

Следует отметить, что по вопросу проводимости соединений LnBi пока нет однозначного ответа. Так, согласно расчетам электронного спектра, методом MO-ЛКАО [69], соединения типа LnBi проявляют полупроводниковые свойства, ширина запрешенной зоны которых в среднем составляет 0.32 · 10⁻¹⁹ Дж.

Электрофизические свойства Gd₄Bi₃ и Dy₄Bi₃ исследовали в [42, 43, 69], где определено, что они проявляют металлическую проводимость.

Температурную зависимость удельного электросопротивления (ρ) и термо-э.д.с (α) соединений и сплавов систем Ln – Bi (Ln = Pr, Nd, Gd, Tb), а также твердых растворов систем Gd₄Bi₃ – Ln₄Bi₃ (Ln = Pr, Nd, Tb) исследовали в диапазоне температур 298-773 К [39]. Определено, что во всем исследованном диапазоне температур удельное электросопротивление и термо-э.д.с. соединений, сплавов и твердых растворов указанных систем изменяются линейно, что характерно металлическим проводникам.

Электрофизические свойстваа некоторых твердых растворов систем $Gd_4Bi_3 - Ln_4Bi_3$ (Ln = Pr, Nd, Tb), при комнатной температуре, приведены в таблице 1.5.

В [27], при комнатной температуре, исследовали концентрационную зависимость удельного электросопротивления, термо-э.д.с. и коэффициента Холла сплавов системы Nd – Bi. Отметим, что отсутствие в данной работе сведений по гомогенности и чистоте использованных образцов затрудняет

Таблица 1.5 -	Электрофизические	свойства некоторых	твердых рас	творов си	-
стем Gd ₄ Bi ₃ - 1	Ln_4Bi_3 ($Ln = Pr, Nd, 7$	Tb) при комнатной т	емпера туре	[40]	

Твердые раство-	Удельное элек-	Электропровод-	Термо-э.д.с.,
ры	тросопротивление,	ность,	-α,
	ρ x [.] 10 ⁶ ,	$\sigma \ge 10^{-5}$,	мкВ/К
	Ом ' м	$OM^{-1} \cdot M^{-1}$	
1	2	3	4
$Gd_{3.6}Pr_{0.4}Bi_3$	6.4	1.56	6.5

1	2	3	4
$Gd_{3.2}Pr_{0.8}Bi_3$	5.9	1.69	6.4
$Gd_{2.8}Pr_{1.2}Bi_3$	5.0	2.0	6.2
$Gd_{2.4}Nd_{1.6}Bi_3$	4.7	2.12	6.9
Gd ₂ Nd ₂ Bi ₃	4.2	2.38	7.0
$Gd_{1.6}Nd_{2.4}Bi_3$	3.4	2.94	6.8
Gd _{1.2} Tb _{2.8} Bi ₃	5.8	1.72	3.6
Gd _{0.8} Tb _{3.2} Bi ₃	5.7	1.75	3.4
Gd _{0.4} Tb _{3.6} Bi ₃	5.6	1.78	3.0

оценить достоверность полученных в [27] результатов.

Магнитные свойства соединений РЗЭ типа LnBi в диапазоне температур 77-523 К и напряженности магнитного поля 3.66 · 10⁵ А/м были исследованы в [55], где определено, что их температурная зависимость магнитной восприимчивости, за исключением SmBi, во всем диапазоне температур следует закону Кюри-Вейсса.

Магнитные свойства соединений РЗЭ типа LnBi от лантана до лютеция в [70] были также изучены в диапазоне температур 1.5-750 К и магнитных полях напряженностью 10.34-63.65 · 10⁵ А/м. Установлено, что указанные соединения при низких температурах являются антиферромагнетиками.

Магнитные свойства Gd₄Bi₃ изучены в [42, 43]. Определена его температура Кюри, которая составляет 340 К.

По данным [71] соединения и сплавы системы Nd – Ві в диапазоне температур 100-350 К являются парамагнитными.

Магнитные свойства соединений и сплавов систем Ln - Bi (Ln = Pr, Nd, Gd, Tb) и твердых растворов систем $Gd_4Bi_3 - Ln_4Bi_3$ (Ln = Pr, Nd, Tb) в [39] изучали в диапазоне температур 298-773 К. Согласно данным этой работы, соединения, сплавы систем Ln – Bi (Ln = Pr, Nd, Gd, Tb) и твердые растворы $Gd_{4-x}Ln_xBi_3$ (Ln = Pr, Nd, Tb); (x=0.4-3.6) проявляют парамагнитную природу.

Зависимость 1/дм-Т (дм-молярная магнитная восприимчивость) соеди-

нений, сплавов систем Ln – Bi (Ln = Pr, Nd, Gd, Tb) и твёрдых растворов $Gd_{4-x}Ln_xBi_3$ (Ln = Pr, Nd, Tb); (x=0.4-3.6) в диапазоне температур 298-773 К подчиняется закону Кюри-Вейсса. При этом температурная зависимость $1/\chi_{M}$ –Т сплавов диапазона концентраций 10-42.86 % Вi сиситемы Gd – Bi в диапазоне температур 298-498 К не следует закону Кюри-Вейсса. Автор работы [39] обясняет это тем, что в указанном диапазоне температур сплавы системы Gd – Bi, возможно, испытывают ферро- или ферримагнитное упорядочение.

Таблица 1.6 - Магнитные свойства соединений систем Ln – Bi (Ln = Pr, Nd, Tb) и твёрдых растворов $Gd_{4-x}Ln_xBi_3$ (Ln = Pr, Nd, Tb); (x=0.4÷3.6) [39]

Висмутиды РЗЭ	Молярная маг-	Парамагнитная	Эффективный
и твердые рас-	нитная воспри-	температура	магнитный мо-
творы	имчивость,	Кюри,	мент,
1	$\chi_{\rm m} \cdot 10^6$	$\theta_{\rm p}, {\rm K}$	μ_{abb} , x 10 ²⁴ , A·m ²
	при 298 К		• • • • • •
	1		
1	2	3	4
Pr ₂ Bi	6275.8	12	33.57
Pr ₅ Bi ₃	6539.3	13	34.22
Pr ₄ Bi ₃	5962	11	32.73
Pr Bi	5685	8	32.18
PrBi ₂	4458.6	5	28.65
Nd ₂ Bi	7510.7	78	33.66
Nd ₅ Bi ₃	7299.2	72	33.66
Nd ₄ Bi ₃	6801.9	56	33.66
NdBi	6451.6	42	33.66
NdBi ₂	3426.8	21	25.5
Gd ₅ Bi ₃	127881.6	358	72.7
Gd ₄ Bi ₃	116180.5	365	73.17
GdBi	35672.1	86	72.15
Tb ₅ Bi ₃	94580,1	142	92,36

1	2	3	4
Tb ₄ Bi ₃	85448,2	128	92,36
TbBi	76086.9	112	91,81
Gd _{3,6} Pr _{0,4} Bi ₃	106363.6	232	69.55
$\operatorname{Gd}_{3,2}\operatorname{Pr}_{0,8}\operatorname{Bi}_3$	64717.0	192	68.7
$\operatorname{Gd}_{2,8}\operatorname{Pr}_{1,2}\operatorname{Bi}_3$	41728.3	136	68.2
$Gd_{2,8}Nd_{1,2}Bi_3$	82438.7	240	57.31
Gd _{2,4} Nd _{1,6} Bi ₃	65789.4	220	59.44
Gd ₂ Nd ₂ Bi ₃	50506.8	190	71.68
$Gd_{3.6}Tb_{0.4}Bi_3$	102857.1	242	63.06
Gd _{3.2} Tb _{0.8} Bi ₃	85570.0	219	68.16
$Gd_{2.8}Tb_{1.2}Bi_3$	73645.8	202	69.5

Примечание: χ_m –молярная магнитная восприимчивость;

θ_р – парамагнитна температура Кюри;

µ_{эфф}.- эффективный магнитный момент ионов РЗЭ.

В таблице 1.6. приведены магнитные свойства соединений систем Ln – Bi (Ln = Pr, Nd, Tb) и твёрдых растворов $Gd_{4-x}Ln_xBi_3$ (Ln = Pr, Nd, Tb); (x=0.4-3.6).

Из таблицы 1.6. видно, что наименьшие значения парамагнитной температуры Кюри проявляют соединения и сплавы системы Pr - Bi, а наибольшие сплавы и соединения систем Ln - Bi (Ln = Gd, Tb). При этом в системе Gd - Bi, среди других соединений и сплавов, самаую высокую парамагнитную температуру Кюри (365 K) проявляет Gd_4Bi_3 .

1.4.2 Теплофизические и химические свойства соединений РЗЭ с висмутом

Теплопроводность соединений РЗЭ иттриевой подгруппы с висмутом исследовали в [72]. Установлено, что фононная составляющая общей теплопроводности с ростом температуры возрастает.

В [73] было изучено термическое расширение (КТР) соединений РЗЭ

типа LnBi в диапазоне температур 298-1073 К. Результаты исследования позволили авторам данной работы вычислить характеристическую температуру Дебая и определить величины среднеквадратичных смещений ионов соединений LnBi. Кроме того, установлено, что от лантана к церию КТР соединений CeBi, как и КТР фосфидов РЗЭ [74], возрастает, а от церия к празеодиму КТР соединения PrBi уменьшается. В дальнейшем, с увеличением порядкового номера РЗЭ, КТР соединений LnBi растет.

Термодинамические свойства висмутидов РЗЭ исследовали двумя методами - методом калориметриии и измерением электродвижущей силы гальванического элемента с жидким электролитом [2,5,28,38,75-77].

В указанных работах выявлено, что наиболее отрицательные значения энтальпий образования свойственны висмутидам, обладающими наибольшими значениями температур плавления. Заметим, что этот вывод не выполняется для соединений систем Ln –Bi (Ln = La, Ce). Так, самыми тугоплавкими соединениями этих систем являются соединения La₄Bi₃ и Ce₄Bi₃ [78], а наибольшие значения энтальпий образования проявляют соединения LnBi (Ln = La, Ce) [77, 78, 79].

Эффузионным методом Кнудсена в режиме полного изотермического испарения с масс-спектрометрическим анализом пара в [80-82] изучали термодинамические свойства соединений LnBi (Ln = La, Pr, Nd, Gd). Это позволила авторам рассчитать стандартные энтальпии образования указанных соединений.

Химические свойства соединений РЗЭ с висмутом, по сравнению с физическими, изучены крайне мало.

В [83] изучен процесс окисления соединений LnBi P3Э на воздухе методами дериватографии и рентгенофазового анализа. Установлено, что продуктами окисления являются оксиды P3Э и висмута, а также висмутитов - LnBiO₃.

Растворимость соединений LnBi в разных средах изучали в [84]. Выявлено, что эти соединения растворяются в азотной кислоте, а в серной только

31

при нагревании. Соединения LnBi также не растворяются в органических растворителях и в растворах щелочей как в обычных условиях, так и при нагревании.

В [27] исследовали коррозионные свойства сплавов системы Nd – Ві воздействием разбавленной серной кислоты (1:1). Выявлено, что среди соединений данной системы наименее кррозионностойким является соединение NdBi.

1.5 Выводы по обзору литературы

Согласно проведённому литературному обзору по диаграммам состояния систем РЗЭ – висмут, можно заключить, что наиболее надежные данные получены для диаграмм состояния систем РЗЭ иттриевой подгруппы с висмутом, за исключением диаграмы состояния системы Yb –Bi, требующая ее уточнения.

Гораздо слабее изучены диаграммы состояния систем РЗЭ цериевой подгруппы с висмутом. В повторном иследовании нуждаются диаграммы состояния систем Ln - Bi (Ln = La, Ce, Sm), а диаграмма состояния системы Eu - Bi пока еще не изучена.

Обзор литературы по кристаллохимии соединений систем РЗЭ - висмут указывает на то, что в них, в основном, образуются соединения Ln₂Bi, Ln₅Bi₃, Ln₄Bi₃, LnBi и LnBi₂, кристаллизующихся, соответственно, в тетрагональной, гексагональной, кубической и ромбической сингонии.

В системах РЗЭ цериевой подгруппы с висмутом характерно образование соединений типа Ln_2Bi , Ln_4Bi_3 и $LnBi_2$, а во всех системах соединений Ln_5Bi_3 , и LnBi.

В системах РЗЭ иттриевой подгруппы с висмутом соединения типа Ln_4Bi_3 , образуются только в системах Ln - Bi (Gd, Tb). Кроме того, в работах по исследованию диаграмм сосотояния систем РЗЭ иттриевой подгруппы с висмутом указывается на вероятность образования в системах Ln - Bi (Ln = Tb, Ho, Er, Tm, Lu) соединений типа $LnBi_2$.

Из обзора литературы по физическим и химическим свойствам сплавов

и соединений систем РЗЭ - Ві явствует, что до настоящего времени наиболее полно изучены физико-химические свойства моновисмутидов РЗЭ -LnBi.

Исследованием электрофизических и магнитных свойства сплавов и соединений систем Ln - Bi (Ln = Pr, Nd, Gd, Tb), а также твердых растворов систем $Gd_4Bi_3 - Ln_4Bi_3$ (Ln = Pr, Nd, Tb) установлено, что им свойственна металлическая проводимость и в обычных условиях проявляют парамагнитные свойства.

Крайне незначительно изучены физико-химические свойства соединений Ln₂Bi, Ln₅Bi₃, Ln₄Bi₃ и LnBi₂. С нашей точки зрения, это объясняется слабой разработанностью методик синтеза соединений и сплавов сиситем РЗЭ с висмутом, приведенных в научной литературе, не позволяющих надёжно получать гомогенные и достаточно чистые образцы. Так, синтез висмутидов ампульным методом или путем сплавления компонентов, с присущими им недостатками, вряд ли способствуют получению гомогенных индивидуальных соединений и сплавов.

Химические свойства соединений и сплавов систем Ln – Ві изучены незначительно. Это можно объснить тем, что РЗЭ и сплавы на их основе проявляют интересные физические свойства, что обнадёживает исследователей в поиске новых материалов.

ГЛАВА 2 СИНТЕЗ ТВЁРДЫХ РАСТВОРОВ СИСТЕМ Gd5Bi3 – Ln5Bi3 (Ln = Tb, Dy, Ho, Er, Tm, Lu) И МЕТОДЫ ФИЗИКО-ХИМИЧЕСКИХ ИССЛЕДОВАНИЙ

2.1 Синтез твердых растворов систем Gd₅Bi₃ – Ln₅Bi₃ (Ln = Tb, Dy, Ho, Er, Tm, Lu)

С целью разработки методов синтеза твердых растворов систем $Gd_5Bi_3 - Ln_5Bi_3$ (Ln = Tb, Dy, Ho Er, Tm, Lu) с привлечением рентегофазового и микоструктурного анализов исследован процесс взаимодействия РЗЭ с висмутом и Gd_5Bi_3 с Ln_5Bi_3 (Ln = Tb, Dy, Ho Er, Tm, Lu).

В качестве исходных компонентов при синтезе твердых растворов систем $Gd_5Bi_3 - Ln_5Bi_3$ (Ln = Tb, Dy, Ho Er, Tm, Lu) применяли дистилляты РЗЭ и висмут марки ОСЧ 11-4. Химический состав РЗЭ и висмута приведены в Приложении, таблицах 1 и 2.

Вследствие близких значений температур плавления висмутидов Ln₅Bi₃ (Ln = Gd, Tb, Dy, Ho, Er, Tm, Lu), (Глава 3, рисунки 3.1, 3.3, 3.5, 3.7, 3.9,3.11) процесс взаимодействия P3Э с висмутом и Gd₅Bi₃ с Ln₅Bi₃ (Ln = Tb, Dy, Ho Er, Tm, Lu) исследовали при одном и том ж е температурном и временном режиме, в диапазоне температур 573÷1673 К и времени выдержки при этих температурах $3\div4$ ч.

Для проведения исследования навеску, состоящей из стружек РЗЭ и висмута определенного стехиометрического состава, массой 5-10 г, спрессовывав в штабик, помещали в герметизированный молибденовый тигель, а затем подвергали нагреванию (со скоростью 5-10 град/мин), с последующей выдержкой при температурах 573÷1673 К

Следует отметить, что в [85] процесс взаимодействия РЗЭ с висмутом изучен методом дифференциального термического анализа. Это исключало необходимость его проведения в данной диссертационной работе.

В таблице 2.1 приведен фазовый состав продуктов взаимодействия РЗЭ с висмутом при образовании твердых растворов систем Gd₅Bi₃ – Ln₅Bi₃

Таблица 2.1 - Фазовый состав продуктов взаимодействия РЗЭ с висмутом

	Темпера-	Время	
Исходные	тура син-	вы-	Фазовый состав продуктов вза-
компоненты	теза,	держки,	имодействия РЗЭ с висмутом
	±50 K	Ч.	
1	2	3	4
	573	4±1	Gd, Tb, LnBi (Ln = Gd, Tb)
	673	4±1	Gd, Tb, LnBi (Ln = Gd, Tb)
	823	4±1	Gd, Tb, LnBi (Ln = Gd, Tb)
(5-x) Gd + xTb +3Bi x = $0.5 \div 4.5$.	973	3.5±0.5	LnBi, Ln_5Bi_3 (Ln = Gd, Tb)
	1173	3.5±0.5	LnBi, Ln_5Bi_3 (Ln = Gd, Tb),
			$Gd_{5-x}Tb_xBi_3$
	1373	3±0.5	Ln_5Bi_3 ($Ln = Gd, Tb$),
			Gd _{5-x} Tb _x Bi ₃
	1573	3±0.5	Ln_5Bi_3 ($Ln = Gd, Tb$),
			Gd _{5-x} Tb _x Bi ₃
	1673	3±0.5	Gd _{5-x} Tb _x Bi ₃
$(5 \mathbf{y}) \mathbf{Gd} + \mathbf{y} \mathbf{Dy} + 3\mathbf{Bi}$	573	4±1	Gd, Dy, LnBi (Ln = Gd, Dy)
(3-x) $Gd + xDy+3B1$ x = 0.5÷4.5	673	4±1	Gd, Dy, LnBi (Ln = Gd, Dy)
	823	4±1	Gd, Dy, LnBi (Ln = Gd, Dy)
(5-x) Gd + xDy+3Bi x = $0.5 \div 4.5$	973	3.5±0.5	LnBi, Ln_5Bi_3 , ($Ln = Gd$, Dy)
	1173	3.5±0.5	LnBi, Ln_5Bi_3 (Ln = Gd, Dy),
			$Gd_{5-x}Dy_{x}Bi_{3}$
	1373	3±0.5	$Ln_5Bi_3(Ln = Gd, Dy),$
			$Gd_{5-x}Dy_{x}Bi_{3}$
	1573	3±0.5	$Ln_5Bi_3(Ln = Gd, Dy),$
			$Gd_{5-x}Dy_{x}Bi_{3}$
	1673	3±0.5	Gd _{5-x} Dy _x Bi ₃

1	2	3	4
$(5-x)Gd + xHo+3Bi$ $x = 0.5 \div 4.5$	573	4±1	Gd, Ho, LnBi (Ln = Gd, Ho)
	673	4±1	Gd, Ho, LnBi (Ln = Gd, Ho)
	823	4±1	Gd, Ho, LnBi (Ln = Gd, Ho)
	973	3.5±0.5	LnBi, Ln_5Bi_3 , ($Ln = Gd$, Ho)
	1173	3.5±0.5	$LnBi, Ln_5Bi_3 (Ln = Gd, Ho),$
			Gd _{5-x} Ho _x Bi ₃
	1373	3±0.5	Ln_5Bi_3 ($Ln = Gd$, Ho),
			Gd _{5-x} Ho _x Bi ₃
	1573	3±0.5	Ln_5Bi_3 ($Ln = Gd$, Ho),
			Gd _{5-x} Ho _x Bi ₃
	1673	3±0.5	Gd _{5-x} Ho _x Bi ₃
	573	4±1	Gd, Er, LnBi (Ln = Gd, Er)
	673	4±1	Gd, Er, LnBi (Ln = Gd, Er)
	823	4±1	Gd, Er, LnBi (Ln = Gd, Er
	973	3.5±0.5	LnBi, Ln_5Bi_3 , ($Ln = Gd$, Er)
$(5-x)Gd + xEr + 3Bi$ $x = 0.5 \div 4.5$	1173	3.5±0.5	LnBi, Ln_5Bi_3 ($Ln = Gd$, Er),
			Gd _{5-x} Er _x Bi ₃
	1373	3±0.5	Ln_5Bi_3 ($Ln = Gd, Er$),
			Gd _{5-x} Er _x Bi ₃
	1573	3±0.5	Ln_5Bi_3 ($Ln = Gd, Er$),
			Gd _{5-x} Er _x Bi ₃
	1673	3±0.5	Gd _{5-x} Er _x Bi ₃
	573	4±1	Gd, Tm, LnBi (Ln = Gd, Tm)
	673	4±1	Gd, Tm, LnBi (Ln = Gd, Tm)
(5-x)Gd + xTm+3Bi $x = 0.5 \pm 4.5$	823	4±1	Gd, Tm, LnBi (Ln = Gd, Tm)
A = 0.5 · 1.5	973	3.5±0.5	LnBi, Ln_5Bi_3 , ($Ln = Gd$, Tm)
	1173	3.5±0.5	LnBi, Ln_5Bi_3 ($Ln = Gd, Tm$),
			Gd _{5-x} Tm _x Bi ₃
1	2	3	4
--	------	---------	---
	1373	3±0.5	Ln_5Bi_3 ($Ln = Gd, Tm$),
			Gd _{5-x} Tm _x Bi ₃
(5-x)Gd + xTm + 3Bi	1573	3±0.5	Ln_5Bi_3 ($Ln = Gd, Tm$),
$x = 0.5 \div -4.5$			Gd _{5-x} Tm _x Bi ₃
	1673	3±0.5	Gd _{5-x} Tm _x Bi ₃
	573	4±1	Gd, Lu, LnBi (Ln = Gd, Lu)
	673	4±1	Gd, Lu, LnBi (Ln = Gd, Lu)
	823	4±1	Gd, Lu, LnBi (Ln = Gd, Lu
	973	3.5±0.5	LnBi, Ln_5Bi_3 , ($Ln = Gd$, Lu)
$(5 \mathbf{y})\mathbf{Gd} \pm \mathbf{y}\mathbf{Lu} \pm 3\mathbf{Bi}$	1173	3.5±0.5	$LnBi, Ln_5Bi_3 (Ln = Gd, Lu),$
$x = 0.5 \div 4.5$			Gd _{5-x} Lu _x Bi ₃
	1373	3±0.5	Ln_5Bi_3 ($Ln = Gd, Lu$),
			Gd _{5-x} Er _x Bi ₃
	1573	3±0.5	Ln_5Bi_3 ($Ln = Gd, Lu$),
			Gd _{5-x} Lu _x Bi ₃
	1673	3±0.5	Gd _{5-x} Lu _x Bi ₃

(Ln =Tb, Dy, Ho Er, Tm, Lu, x = 0.4÷4.5). Из таблицы следует, что в диапазоне температур 573-823 К продукты взаимодействия РЗЭ с висмутом состоят из моновисмутидов и свободных РЗЭ.

Образование висмутидов Ln_5Bi_3 и твердых растворов $Gd_{5-x}Ln_xBi_3$ (Ln = Tb, Dy, Ho Er, Tm, Lu; x= 0.4÷4.5) зафиксировано в диапазоне температур 973-1573 К. При этом однофазные твёрдые растворы $Gd_{5-x}Ln_xBi_3$ (Ln = Tb, Dy, Ho Er, Tm, Lu; x = 0.4÷4.5) образуются при температуре 1673 К и времени выдержки 3±0.5 ч.

Микроструктурный анализ подтверждает результаты рентгенофазового анализа продуктов взаимодействия РЗЭ с висмутом. В качестве примера на рисунке 2.1 приведены фотографии микроструктур продуктов взаимодействия гадолиния, тербия и висмута при образовании твердого твердого раст-

37

Рисунок 2.1 - Микроструктура продуктов взаимодействия гадолиния, тербия с висмутом при температурах 1173 (а), x120, 1373 (б), x120, 1573 (в), x180, 1673 К (г), x110 и времени выдержки 3.5±0.5 ч.

При температуре синтеза 1173 К и времени выдержки 3.5 ± 0.5 ч. продукт трехфазен (рисунок 1, а). Темная часть фотографии микроструктуры включает две фазы - Gd₅Bi₃ с (микротвердостью 2250 ±100 МПа) и Tb₅Bi₃ (с микротведостью 2045±50 МПа). Светлая фаза - твердый раствор Gd₃Tb₂Bi₃ (с микротвердостью 3860±100 МПа). При температуре 1373 и 1573 К и времени выдержки 3.5 ± 0.5 ч (рисунок 1, б, в) доля фазы Gd₃Tb₂Bi₃ в продукте растет, а доля фаз Gd₅Bi₃ и Tb₅Bi₃ уменьшается. При этом при 1673К и времени выдержки 3.5 ± 0.5 ч образуется однофаный твердый раствор Gd₃Tb₂Bi₃ (рисунок 1, г). Темные полосы на микроструктуре –микротрещины, возникшие в процессе полировки образца.

Проведенные иследования позволили нам разработать два способа получения твердых растворов систем $Gd_5Bi_3 - Ln_5Bi_3$ (Ln = Tb, Dy, Ho, Er, Tm, Lu):

1. Непосредственным взаимодествием РЗЭ с висмутом.

2. Взаимодействием Gd_5Bi_3 и Ln_5Bi_3 (Ln = Tb, Dy, Ho, Er, Tm, Lu).

Первым способом твердые растворы систем Gd₅Bi₃ – Ln₅Bi₃ (Ln = Tb, Dy, Ho, Er, Tm, Lu) получали следующим образом. Спресованную смесъ стружек РЗЭ и висмута, определенного стехиометричесого состава массой 15-20 г спрессовывали, помещали в герметизированный молибденовый тигель и подвергали нагреванию со скоростью 5-10 град./мин в вакууме (0,0133 Па), с выдержкой при определенных температурах.

Оптимальные условия синтеза твердых растворов систем Gd₅Bi₃ – Ln₅Bi₃ (Ln = Tb, Dy, Ho, Er, Tm, Lu) непосредственным взаимодействием РЗЭ с висмутом приведены в таблице 2.2.

Вторым способом указанные твердые растворы получали взаимодействем предварительно синтезиованных Gd_5Bi_3 с Ln_5Bi_3 (Ln = Gd, Tb, Dy, Ho, Er, Tm, Lu). Для этого навеску (массой 15-20 г), состоящей из порошка Gd_5Bi_3 и порошка одного из Ln_5Bi_3 спрессовывали и в герметизированном молибденовом тигле в вакуме (0,0133 Па) подвергали нагреванию со скоростью нагревания и охлаждения 80 град/мин. Нагревание тигля с навеской проводили на установке ВДТА-8МЗ.

Установлено, что для всех твёрдых растворов систем $Gd_5Bi_3 - Ln_5Bi_3$ (Ln = Tb, Dy, Ho, Er, Tm, Lu) оптимальные условия синтеза одинаковы (таблица 2.3).

Соединения Ln_5Bi_3 (Ln = Gd, Tb, Dy, Ho, Er, Tm, Lu) получали с применением в качестве исходных компонентов моносоединений - LnBi (Ln = Gd, Tb, Dy, Ho, Er, Tm, Lu) и РЗЭ. Для проведения синтеза данных соедиинений навеску (массой до 20 г), состоящей из порошока моносоединения и стружки соответствующего РЗЭ, стехиометрического состава 62.5 ат.% РЗЭ и 37.5 ат% Ві спрессовывали, помещали в герметезированный тигель и нагревали до оптимальной температуры с последующей выдержкой при ней.

Таблица 2.2 - Оптимальные условия синтеза твердых растворов систем Gd₅Bi₃ - Ln ₅Bi₃ (Ln = Gd, Tb, Dy, Ho, Er, Tm, Lu) прямым взаимодействием компонентов – РЗЭ и висмута

Исходные компоненты	Температура	Время вы-	Твердые растворы
	синтеза,	держки, ч	
	±50 K		
	573	4±1	
	673	4±1	
(5-x)Gd + xLn + 5B1	873	4±1	$Gd_{5-x}Ln_xBi_3$
$(LII = 10, Dy, Ho, Er, 111, Lu)$ $x = 0.5 \div 1.5$	1073	3±0.5	(Ln = Tb, Dy, Ho)
Lu), $x = 0.5 \div 4.5$	1273	3±0.5	Er, Tm, Lu;
	1473	3±0.5	$x = 0.5 \div 4.5$)
	1673	4±0.5	

Таблица 2.3 - Оптимальные условия синтеза твёрдых растворов систем $Gd_5Bi_3 - Ln_5Bi_3$ посредством висмутидов Ln_5Bi_3 (Ln = Gd, Tb, Dy, Ho, Er, Tm, Lu)

Исходные компоненты	Темпера-	Время вы-	Твёрдые растворы
	тура син-	держки, ч	
	теза,		
	±50 K		
$Gd_{5-x}Bi_{3-y} + Ln_xBi_y$			$Gd_{5-x}Ln_xBi_3$
Ln = T b, Dy, Ho, Er, Tm,	1673	2±1	(Ln = Tb, Dy, Ho, Er,
Lu; $x = 0.5 \div 4.5, y = 0.3 \div 2.7$			Tm, Lu)

Моновисмутиды синтезировали прямым взаимодействием стружек РЗЭ и висмута в герметизированных молибденовых тиглях при температуре 1173-1373 К и времени выдержки 4±1 ч.

Условия синтеза соединений Ln_5Bi_3 (Ln = Gd, Tb, Dy, Ho, Er, Tm, Lu) и

моновисмутидов приведены в таблице 2.4.

Таблица 2.4 - Оптимальные условия синтеза висмутидов Ln_5Bi_3 и моновисмутидов LnBi (Ln = Tb, Dy, Ho, Er, Tm, Lu)

Исходные компоненты	Темпера-	Время вы-	Твёрдые растворы и
	тура син-	держки, ч	висмутиды РЗЭ
	теза,		
	±50 K		
$2I_{n} + 2I_{n}D_{i}(I_{n} - Cd_{i}Th)$			Ln_5Bi_3 ($Ln = Gd, Tb,$
$2L\Pi + 3L\Pi BI (L\Pi = Gd, 1 D, D)$	1623	3±1	Dy, Lu)
Dy, Lu)			
2Ln + 3LnBi	1573	3±0.5	Ln_5Bi_3 (Ln = Ho, Er,
(Ln = Ho, Er, Tm)			Tm)
Ln + Bi (Ln = Gd, T b, Dy,	1373	4±1	LnBi (Ln = Gd, Tb,
Lu)			Dy, Lu)
Ln + Bi (Ln = Ho, Er, Tm)	1173	4±1	LnBi (Ln = Ho, Er,
、 <i>, , , ,</i>			[Tm)

(Ln = Gd, Tb, Dy, Ho, Er, Tm, Lu) подвергали аттестации на однофазность методами рентгенофазового и микроструктурного анализов.

Кристаллохимические характеристики синтезированных висмутидов РЗЭ приведены в таблице 2.5, а твердых растворов систем Gd_5Bi_3 - Ln_5Bi_3 (Ln = Gd, Tb, Dy, Ho, Er, Tm, Lu) в Главе 3, таблицах 3.1- 3.6.

Следует отметить, что твердые растворы систем Gd₅Bi₃ – Ln₅Bi₃ (Ln = Tb, Ho), как магнитный материал защищены тремя малыми патентами Республики Таджикистан (см. Приложения).

2.2 Методы физико-химических исследований 2.2.1 Дифференциальный термический анализ

Дифференциальному термическому анализу (ДТА) подвергали синтнзированные соединения Ln_5Bi_3 (Ln = Gd, Tb, Dy, Ho, Er, Tm, Lu, x = 0.4-4.5) и твердые растворы систем Gd_5Bi_3 - Ln_5Bi_3 (Ln = Gd, Tb, Dy, Ho, Er, Tm, Lu).

Висмутиды	Сингония	Структурный тип	Простран- ственная группа	Параметр элементарной ячейки, ±0,0005 нм			Плотность расчетная, кг/м ³	Микротвер- дость, МПа
				а	В	c		
GdBi	кубич.	NaCl	Fm3m	0.6300			9776	1100±50
TbBi	_//_	-//-	-//-	0.6280			9925	1250±100
DyBi	_//_	-//-	-//-	0.6272			10052	1400±100
HoBi	_//_	-//-	-//-	0.6226			10324	1300±150
ErBi	-//-	-//-	-//-	0,6186			10617	980±130
TmBi	-//-	-//-	-//-	0.6188			10655	920±135
LuBi	-//-	-//-	-//-	0.6154			11004	980±115
Gd ₅ Bi ₃	ромбич.	Y ₅ Bi ₃	Pnma	0.8230	0.9526	1.2110	9730	2250±100
Tb ₅ Bi ₃	_//_	-//-	-//-	0.8202	0.9482	1.1988	10185	2045±50
Dy ₅ Bi ₃	_//_	-//-	-//-	0.8153	0.9412	1.1956	10480	2000±150
Ho ₅ Bi ₃	-//-	_//_	-//-	0.8114	0.9860	1.1873	10720	2100±100
Er ₅ Bi ₃	_//_	-//-	-//-	0.8090	0.9840	1.1813	10950	2050±80
Tm ₅ Bi ₃	-//-	-//-	-//-	0.8061	0.9286	1.1724	11201	1975±120
Lu ₅ Bi ₃	_//_	_//_	-//-	0.8046	0.9768	1.1718	10894	1900±140

Таблица 2.5 - Кристаллохимические характеристики висмутидов РЗЭ

ДТА осуществляли на установке ВДТА-8М3, (модернизированный вариант установки ВДТА [86]), в среде гелия марки ВЧ (Ту-51-681-75).

В качестве датчика температуры использовалась W –W (Re 20%) термопара. Термопару градуировали по значениям температур плавлений особо чистых металлов и оксида алюминия: Bi – 544.3; Pb – 600.5; Zn – 692.3; Sb – 903.6; Cu – 1356; Fe – 1812; Al₂O₃ – 2315 K [87, 88].

В процессе выполнения ДТА исследования нами были учтены рекомендации по проведению анализа, описанных в [89, 90].

Точность измерения температуры составляла ±1% от измеряемой величины. В процессе проведения ДТА использовались образцы массой 1.5-2 г.

2.2.2 Рентгенофазовый анализ

Рентгенофазовый анализ (РФА) соединений и твердых растворов систем $Gd_5Bi_3 - Ln_5Bi_3$ (Ln = Gd, Tb, Dy, Ho, Er, Tm, Lu) проводили на дифрактометре «ДРОН – 2». Излучение отфильтрованное (фильтр –никель) CuK_α.

Дифрактограммы были прописаны в брэговских углах с отметками через 0.1 град. Межплоскостные расстояния -d_{hkl}, в зависимостиот углов скольжения **θ**, находили по таблицам [91,92].

Погрешность в определении значений параметра элементарной ячейки составляла ± 0.0005нм.

2.2.3 Микроструктурный анализ (MCA) и измерение микротвердости

Для исследования микроструктуры образцы полировали следующим образом. На начальной стадии образец полировали наждачной бумагой К3100- К3320, а затем алмазной пастой АП80П, АП28П и АП1П. После этого, для выявления структуры, поверхность образца травили травителем (0.5 об. % HCl + 1 об. % HNO₃ в спирте).

Микроструктуру образцов исследовали на микроскопе «НЕОФОТ-21». Микротвердость образцов измеряли на микротвердомере ПМТ-3, учитывая методические особенности по измерению микротвердости, указанных в [93]. На каждый шлиф наносили 15-20 отпечатков. Время нагружения составляло 6-8 с, а время выдержки под нагрузкой 10-12 с.

2.2.4 Измерение плотности

Плотность образцов определяли, как пикнометрическим методом, так и расчётом, исходя из рентгеновских данных. Измерения плотности пикнометрическим методом проводили на порошках по стандартной методике.

Расчетную (рентгеновскую) плотность рассчитывали по формуле [91]:

$$\rho_{\text{peht.}} = N \cdot M / N_A \cdot V, \qquad (2.1)$$

где р_{рент.} – рентгеновская плотность, кг/м³;

N – число формульных единиц в элементарной ячейке;

М – молекулярная масса, кг;

N_A-число Авогадро;

V – объем элементарной ячейки, м³.

2.2.5. Измерение удельного электросопротивления и термоэ.д.с. в диапазоне температур 298-773 К

Исследования удельного электросопротивления и термо-э.д.с. образцов проводили в диапазоне 298-773 К четырехзондовым методом на установке, сконструированной с участием автора данной работы Рахимова Х.А. (рисунок 2.1).

Держатель (1) и исследуемый образец (2) размещен в камере. Камера охлаждается водой, протекающая по трубке, намотанную на внешнюю ее поверхность. Нагреватель (3) служит для нагревания образца. Величину тока, подаваемого на токовводы (4), изменяли регулятором тока (до 20 А). Для создания в образце градиента температуры служит печь (5), изготовленная из алундов0й трубки на которую бифилярно намотана нихромовая проволока диаметром 0.25 мм. Термопарами WRe (5%) - WRe (20%) (6) измеряли температуру образца. Контакт между токоподводом (8) и исследуемым образцом

Рисунок 2.2 - Установка для измерения удельного электросопротивления и термо-э.д.с. (Пояснения в тексте).

создается пружиной (7). WRe (5%) ветвь термопар в этой установке используется как потенциометрические зонды.

Измерения элктрофизичеких свойств на данной установке проводили в в вакууме порядка 1.33 · 10⁻² Па.

Для исследования использовались образцы цилиндрической формы диаметром 6 мм и высотой 10 мм.

Удельное электросопротивление рассчитывали по известной формуле [39]: $\rho = U/I \cdot S/L$, (2.2)

где $\,\rho$ - удельное электросопротивление, Ом $\,\cdot$ м

U – падение напряжения, мкВ;

I – ток, проходящий через образец, мА;

S – площадь образца, м²;

L - расстояние между зондами, м.

Электропроводность рассчитывали по формуле:

$$\sigma = 1/\rho$$
, (2.3)

где σ – электропроводность, Ом⁻ · м⁻.

Термо-э.д.с. образцов измеряли с одноименных ветвей термопар.

Коэффициент термо-э.д.с. рассчитывали по формуле [39]:

 $\alpha = \Delta U / \Delta T$, (2.4)

где α - коэффициент термо-э.д.с., мкВ/град;

∆U – разность потенциалов на образце относительно одноименных ветвей термопар, мкВ;

 ΔT - разность температур, К.

Относительная погрешность измерения удельного электросопротивления составляла ±2.5, а термо-э.д.с. ±2%.

2.2.6. Исследование магнитной восприимчивости в диапазоне температур 298-773 К

Исследования магнитной восприимчивости образцов проводили в магнитных полях 159-238,7 кА/м, в диапазоне температур 298-773 К, на установке и по методике, приведенной в [94].

Удельную магнитную восприимчивость определяли относительным методом по формуле [94]:

$$\chi_{y_{z}}$$
. $F_{o}^{+}m / \chi_{o}^{+}F^{+}m_{o}$, (2.5)

где $\chi_{yd.}$ – удельная магнитная восприимчивость исследуемого образца;

χ_о – удельная магнитная восприимчивость эталонного образца;

F, F_o – силы, действующие на измеряемый и эталонный образцы;

m, m_o – масса образца и эталона.

В качестве эталонных образцов использовали соль Мора ($\chi_{yg} = 32 \cdot 10^{-6}$) и медный купорос ($\chi_{yg} = 6 \cdot 10^{-6}$).

Молярную магнитную восприимчивость рассчитывали по формуле:

$$\chi_{\rm m.} = \chi_{\rm yg} \cdot {\rm M},$$
 (2.6)

где χ_m – молярная магнитная восприимчивость;

М –молекулярная масса образца в пересчете на грамм-атом металла.

Относительная погрешность измерения магнитной восприимчивости составляла ±3%.

ГЛАВА З ДИАГРАММЫ СОСТОЯНИЯ, ЭЛЕКТРОФИЗИЧЕСКИЕ СВОЙСТВА ВИСМУТИДОВ Ln5Bi3 (Ln = Tb, Dy, Ho, Er, Tm, Lu) И ТВЁРДЫХ РАСТВОРОВ СИСТЕМ Gd5Bi3 – Ln5Bi3 (Ln = Tb, Dy, Ho, Er, Tm, Lu)

3.1. Диаграммы состояния систем Gd₅Bi₃ – Ln₅Bi₃ (Ln = Tb, Dy, Ho, Er, Tm, Lu)

Диаграммы состояния систем Gd₅Bi₃ – Ln₅Bi₃ (Ln = Tb, Dy, Ho, Er, Tm, Lu) исследовали следующими методами физико-химического анализа: дифференциальным термическим, рентгенофазовым и микроструктурным.

Для уточнения строения диаграмм состояния, при комнатной температуре, исследованы концентрационные зависимости удельного электросопотивления, термо-э.д.с. и микротвёрдости твердых растворов указанных систем.

В диапазоне температур 298-773 К изучены, также электрофизические (удельное электросопротивление, темо-э.д.с.) свойства твердых растворов систем $Gd_5Bi_3 - Ln_5Bi_3$ (Ln = Tb, Dy, Ho, Er, Tm, Lu) и соединений Ln_5Bi_3 (Ln = Gd, Tb, Dy, Ho, Er, Tm, Lu).

Для исследования диаграмм состояния указанных систем и элетрофизических свойств, твердые растворы получали по методике, приведенной в Главе 2, разделе 2.1, таблице 2.3, через каждые 10 мол. % Ln₅Bi₃.

Соединения Ln_5Bi_3 (Ln = Gd, Tb, Dy, Ho, Er, Tm, Lu) получены посредством моносоединеий (Глава 2, раздел 2.1, таблица 2.4).

3.1.1 Диаграмма состояния системы Gd₅Bi₃ – Tb₅Bi₃

Диаграмма состояния системы Gd₅Bi₃ – Tb₅Bi₃, построенная по данным ДТА, РФА и MCA сплавов, приведена на рисунке 3.1.

Из диаграммы видно, что в системе образуется непрерывный ряд твердых растворов $Gd_{5-x}Tb_xBi_3$, (x = 0.5÷4.5), плавящихся, как и исходные компоненты - Gd_5Bi_3 и Tb_5Bi_3 , инконгруэнтно. Согласно РФА, твердые растворы

Рисунок 3.1 - Диаграмма состояния системы Gd₅Bi₃ - Tb₅Bi₃.

Таблица 3.1 - Кристаллохимические характеристики твердых растворов системы Gd₅Bi₃ – Tb₅Bi₃. Сингония -ромбическая типа Y₅Bi₃

Твердые раство-	Параметр элементарной			Плотности	ь, кг/м ³
ры	яче	ейки, ±0.00	05 нм		
	а	В	с	экспер.	расчет.
$Gd_{4.5}Tb_{0.5}Bi_3$	0.8235	0.9612	1.2048	9846	9850
Gd_4TbBi_3	0.8230	0.9582	1.1983	9941	9946
$Gd_{3.5}Tb_{1.5}Bi_3$	0.8250	0.9576	1.2024	9892	9898
$Gd_3Tb_2Bi_3$	0.8224	0.9562	1.1902	10048	10052
$Gd_{2.5}Tb_{2.5}Bi_3$	0.8215	0.9538	1.1882	10110	10112
Gd ₂ Tb ₃ Bi ₃	0.8222	0.9542	1.1824	10152	10155
$Gd_{1.5}Tb_{3.5}Bi_3$	0.8200	0.9512	1.1826	10230	10238
$GdTb_4Bi_3$	0.8218	0.9480	1.1932	10140	10145
$Gd_{0.5}Tb_{4.5}Bi_3$	0.8214	0.9478	1.1974	10120	10125

Рисунок 3.2 - Концентрационные зависимости удельного электросопротивления (а), термо-э.д.с. (б) и микротвердости (в) твердых растворов $Gd_{5-x}Tb_xBi_3$ (x = 0.5÷4.5), при 298 К.

указанной системы изоструктурны с исходными компонентами и кристаллизуются в ромбической структуре типа Y₅Bi₃, с пространственной группой Pnma [92].

Кристаллохимические характеристики твердых растворов системы Gd₅Bi₃ – Tb₅Bi₃ представлены в таблице 3.1.

Для примера в Приложении, таблица 5 показан расчет дифрактограммы

твердого раствора Gd_{3.5}Tb_{1.5}Bi₃ (30 мол. % Tb₅Bi₃).

На кривых концентрационных зависимостях удельного электросопротивления и термо-э.д.с. твердых растворов $Gd_{5-x}Tb_xBi_y$; (x= 0.5÷4.5), при комнатной температуре (рисунок. 3.2, а, б), экстремальные точки не проявляются, что свидетельствует об их корреляции с диаграммой состояния системы $Gd_5Bi_3 - Tb_5Bi_3$.

Установлено, что удельное электросопротивление твердых растворов $Gd_{5-x}Tb_xBi_y$, (x= 0.5÷4.5) в диапазоне концентраций 0-100 мол. % Tb_5Bi_3 изменяется в пределах 6.68÷7.42 ·10⁻⁶ Ом ·м, а термо-э.д.с. в пределах (-8.4) ÷ (-11.5) мкВ/К.

На кривой концентрационной зависимости микротвердости твердых растворов $Gd_{5-x}Tb_xBi_3$; (x = 0.5÷4.5) (рисунок 3.2, в), при комнатной температуре, максимальная микротвердость приходится на твердый раствор, содержащий 40 мол % Tb_5Bi_3 .

3.1.2. Диаграмма состояния системы Gd₅Bi₃ – Dy₅Bi₃

Диаграмма состояния системы Gd₅Bi₃ – Dy₅Bi₃ приведена на рисунке 3.3. Как видно из рисунка, эта система качественно не отличается диаграммы состояняи системы Gd₅Bi₃ – Tb₅Bi.

В системе $Gd_5Bi_3 - Dy_5Bi_3$ также, как и в системе $Gd_5Bi_3 - Tb_5Bi_3$, образуется непрерывный ряд изоструктурных твердых растворов $Gd_{5-x}Dy_xBi_3$, (x= 0.5÷4.5), плавящихся инконгруэнтно и кристаллизующихся в ромбической сингонии типа Y_5Bi_3 (таблица 3.2.). В Приложении, таблица 6 представлены результаты расчета дифрактограммы порошка твердого раствора $GdDy_4Bi_3$ (80 мол. % Dy_5Bi_3).

Также, как и для системы Gd₅Bi₃ – Tb₅Bi₃, концентрационные зависимости удельного электросопротивления и термо-э.д.с. твердых растворов изменяются почти линейно, что коррелирует с диаграммой состояния системы Gd₅Bi₃ – Dy₅Bi₃. При этом удельное электросопротивление и термо-э.д.с.

Рисунок 3.3 - Диаграмма состояния системы Gd₅Bi₃ - Dy₅Bi₃.

Таблица 3.2 - Кристаллохимические характеристики твердых растворов системы Gd₅Bi₃ – Dy₅Bi₃. Сингония – ромбическая типа Y₅Bi₃

Твердые растворы	Параметр элементарной			Плотно	сть, кг/м ³
	ячей	ки, ±0.0005	HM		
	a	В	С	экспер.	расчет.
1	2	3	4	5	6
$Gd_{4.5}Dy_{0.5}Bi_3$	0.8226	0.9606	1.2156	9788	9791
Gd_4DyBi_3	0.8208	0.9.582	1.1998	9980	9985
$Gd_{3.5}Dy_{1.5}Bi_3$	0.8212	0.9.564	1.2024	9992	9995
$Gd_3Dy_2Bi_3$	0.8184	0.9.542	1.2012	10078	10082
$Gd_{2.5}Dy_{2.5}Bi_3$	0.8168	0.9516	1.2084	10084	10087

1	2	3	4	5	6
$Gd_2Dy_3Bi_3$	0.8152	0.9496	1.2076	10148	10154
$Gd_{1.5}Dy_{3.5}Bi_3$	0.8148	0.9478	1.2072	10212	10218
GdDy ₄ Bi ₃	0.8134	0.9452	1.2124	10202	10206
$Gd_{0.5}Dy_{4.5}Bi_3$	0.8128	0.9438	1.1958	10400	10404

Рисунок 3.4 - Концентрационные зависимости удельного электросопротивления (а), термо-э.д.с. (б) и микротвердости (в) твердых растворов Gd_{5-x}Dy_xBi₃; (x = 0.5÷-4.5) при 298 К.

 $Gd_{5-x}Dy_{x}Bi_{3}$, (x= 0.5÷4.5), виапазоне концентраций 0-100 мол. % Dy₅Bi₃, изменяются в пределах (5.56÷7.42)·10⁻⁶ Ом·м и (-7.2)÷(-11.5) мкВ/К, соответственно.

Концентрационная зависимость микротвердости $Gd_{5-x}Dy_{x}Bi_{3}$, (x = 0.5÷4.5) (рис. 3.4, в) описывается максимумом, приходящий на твердый раствор, содержащий 30 мол. % $Dy_{5}Bi_{3}$.

3.1.3 Диаграмма состояния системы Gd₅Bi₃ – Ho₅Bi₃

Диаграмма состояния системы Gd₅Bi₃ – Ho₅Bi₃ представлена на рисунке 3.5.

В данной системе, как и в системах $Gd_5Bi_3 - Ln_5Bi_3$ (Tb, Dy), в диапазоне концентраций 0-100 мол.% Ho_5Bi_3 образуется непрерывный ряд изоструктурных твердых растворов $Gd_{5-x}Ho_xBi_3$, $x=0.4\div4.5$, с ромбической решеткой типа Y_5Bi_3 (таблица 3.3). В Приложении, таблица 7 приведены результаты расчета дифрактограммы порошка твердого раствора $Gd_{1.5}Ho_{3.5}Bi_3$ (70 мол. % Ho_5Bi_3).

Результаты исследований концентрационных зависимостей удельного электросопротивления и термо-э.д.с. твердых растворов $Gd_{5-x}Ho_xBi_3$, (x= 0.5÷4.5), при комнатной температуре (рисунок 3.6, a, б.), свидетельствуют об их корреляции с диаграммой состояния системы $Gd_5Bi_3 - Ho_5Bi_3$. При этом удельное электросопротивление и термо-э.д.с. твердых растворов $Gd_{5-x}Ho_xBi_3$; (x= 0.5÷4.5) во всем диапазоне концентраций изменяется в в пределах (5.48÷7.42) ·10⁻⁶ Ом·м и (-7,6) ÷ (-11,5) мкВ/К, соответствено.

Наиболшую микротвердость показывет твердый раствор $Gd_{5-x}Ho_xBi_{3;}$ (x= 0.5÷4.5), содержащий 35 мол. % Ho₅Bi₃.

3.1.4 Диаграмма состояния системы Gd₅Bi₃ – Er₅Bi₃

Данная диаграмма состояния системы $Gd_5Bi_3 - Er_5Bi_3$ (рисунок 3.5) качественно не отличается от диаграмм состояния систем $Gd_5Bi_3 - Ln_5Bi_3$ (Ln = Tb, Dy, Ho). В указанной системе, также образуется изоструктурный ряд

Рисунок 3.5 - Диаграмма состояния системы Gd₅Bi₃ – Ho₅Bi₃.

Таблица 3.3 - Кристаллохимические характеристики твердых растворов си-	-
стемы Gd ₅ Bi ₃ – Ho ₅ Bi ₃ . Сингония – ромбическая типа Y ₅ Bi ₃	

Твердые растворы	Параметр элементарной			Плотность, кг/м ³	
	ячей	ки, ±0.0005	НМ		
	a	В	с	расчет.	экспер.
1	2	3	4	5	6
$Gd_{4.5}Ho_{0.5}Bi_3$	0.8228	0.9664	1.1962	9896	9845
Gd ₄ HoBi ₃	0.8216	0.9668	1.2082	9933	9888
Gd _{3.5} Ho _{1.5} Bi ₃	0.8185	0.9693	1.2013	9930	9872
Gd ₃ Ho ₂ Bi ₃	0.8176	0.9725	1.1982	9960	9952
Gd _{2.5} Ho _{2.5} Bi ₃	0.8168	0.9748	1.1875	10062	10048
Gd ₂ Ho ₃ Bi ₃	0.8153	0.9766	1.2195	9825	9798
$Gd_{1.5}Ho_{3.5}Bi_3$	0.8148	0.9794	1.1987	10018	10012

1	2	3	4	5	6
Gd Ho ₄ Bi ₃	0.8132	0.9807	1.1787	10203	10188
$Gd_{0.5}Ho_{4.5}Bi_3$	0.8125	0.9835	1.1994	10034	10022

Рисунок 3.6 - Концентрационные зависимости удельного электросопротивления (а), термо-э.д.с. (б) и микротвердости (в) твердых растворов Gd_{5-x}Ho_xBi₃; (x = 0.5÷4.5) при 298 К.

Таблица 3.4 - Кристаллохимические характеристики твердых растворов системы Gd₅Bi₃ – Er₅Bi₃. Сингония – ромбическая типа Y₅Bi₃

Твердые растворы	Параметр элементарной			Плотност	ь, кг/м ³
	ячейк	хи, ±0.0005	HM		
	a	В	с	расчет.	экспер.
$Gd_{4.5}Er_{0.5}Bi_3$	0.8218	0.9642	1.2024	9888	9824
Gd_4ErBi_3	0.8206	0.9672	1.1922	9991	9938
$Gd_{3.5}Er_{1.5}Bi_3$	0.8200	0.9684	1.2046	9918	9882
Gd ₃ Er ₂ Bi ₃	0.8188	0.9698	1.1886	10086	9998
$Gd_{2.5}Er_{2.5}Bi_3$	0.8166	0.9716	1.2182	9884	9788
$Gd_2Er_3Bi_3$	0.8134	0.9744	1.1864	10195	10178
$Gd_{1.5}Er_{3.5}Bi_3$	0.8124	0.9758	1.1952	10172	10158
GdEr ₄ Bi ₃	0.8118	0.9782	1.1788	10313	10304
Gd _{0.5} Er _{4.5} Bi ₃	0.8106	0.9794	1.1952	10209	10202

Рисунок 3.8 - Концентрационные зависимости удельного электросопротивления (а), термо-э.д.с. (б) и микротвердости твердых растворов Gd_{5-x}Er_xBi₃; (x= 0.5÷4.5) (в) при 298 К.

твердых растворов $Gd_{5-x}Er_xBi_3$, x= 0.4÷4.5, кристаллизующихся в ромбической структуре типа Y₅Bi₃ (таблица 3.4).

В Приложении, таблица 8 приведены результаты расчета дифрактограммы твердого раствора Gd₂Er₃Bi₃ (60 мол. % Er₅Bi₃). Концентрационные зависимости удельного электросопротивления,

термо-э.д.с. и микротвердости твердых растворов $Gd_{5-x}Er_xBi_3$ (x = 0.5÷4.5) коррелируют с диаграммой состояния системы $Gd_5Bi_3 - Er_5Bi_3$ (рисунок 3.8, а, б, в).

Удельное электросопротивление и термо-э.д.с. твердых растворов $Gd_{5-x}Er_xBi_3$, (x = 0.5÷4.5) в диапазоне концентраций 0-100 мол. % Er_5Bi_3 составляют (4.25÷7.42) ·10⁻⁶ Ом·м, и (-6,5) ÷ (-11) мкВ/К, соответственно.

Максимальное значение микротвердости показывает твердый раствор, содержащий 20 мол. % Er₅Bi₃.

3.1.5 Диаграмма состояния системы Gd₅Bi₃ – Tm₅Bi₃

Диаграмма состояния системы $Gd_5Bi_3 - Tm_5Bi_3$ приведена на рисунке 3.9.

Указанная диаграмма состояния схожа с вышерассмотренными диаграммами состояния систем $Gd_5Bi_3 - Ln_5Bi_3$ (Ln = Tb, Dy, Ho, Er). В системе $Gd_5Bi_3 - Tm_5Bi_3$ также, как и в системах $Gd_5Bi_3 - Ln_5Bi_3$ (Ln = Tb, Dy, Ho, Er), во всём диапазоне концентраций образуется непрерывный ряд изоструктурных твердых растворов $Gd_{5-x}Tm_xBi_3$, (x = 0.5÷ 4.5), (таблица 3.10).

В Приложении, таблица 9 приведены результаты расчета дифрактограммы твердого раствора Gd_{2.5}Tm_{2.5}Bi₃ (50 мол. % Tm₅Bi₃).

На рисунке 3.10, а, б, в представлены концентрационные зависимости удельного электросопротивления и термо-э.д.с. твердых растворов Gd_{5-x}Tm_xBi₃; (x = 0.5÷4.5), которые указывают на их корреляцию с диаграммой состояния системы Gd₅Bi₃ – Tm₅Bi₃.

Следует отметить, что концентрационная зависимость микротвердостти твердых растворов $Gd_{5-x}Tm_xBi_3$; (x = 0.5÷4.5), в отличие от аналогичной зависимости твердых растворов систем $Gd_5Bi_3 - Ln_5Bi_3$ (Ln = Tb, Dy, Ho, Er), изменяется почти линейно (рисунок 3.10, в).

Во всем диапазоне концентраций удельное электросопротивление и

Рисунок 3.9- Диаграмма состояния системы Gd₅Bi₃ - Tm₅Bi₃

Таблица 3.5 Кристаллохимические характеристики твердых растворов системы Gd₅Bi₃ – Tm₅Bi₃. Сингония – ромбическая типа Y₅Bi₃

Твердые растворы	Параметр элементарной ячейки, ±0.0005 нм			Плотность, кг/м ³	
	а в с		расчет.	экспер.	
1	2	3	4	5	6
$Gd_{4.5}Tm_{0.5}Bi_3$	0.8204	0.9578	1.1880	10096	10092
Gd ₄ TmBi ₃	0.8204	0.9576	1.1842	10173	10168
Gd _{3.5} Tm _{1.5} Bi ₃	0.8182	0.9516	1.1778	10363	10357
Gd ₃ Tm ₂ Bi ₃	0.8186	0.9474	1.1986	10265	10262
Gd _{2.5} Tm _{2.5} Bi ₃	0.8158	0.9438	1.2066	10313	10310
Gd ₂ Tm ₃ Bi ₃	0.8136	0.9418	1.1972	11212	11208
Gd _{1.5} Tm _{3.5} Bi ₃	0.8114	0.9376	1.1804	10774	10772

1	2	3	4	5	6
$GdTm_4Bi_3$	0.8102	0.9348	1.1686	10958	10954
$Gd_{0.5}Tm_{4.5}Bi_3$	0.8088	0.9304	1.1644	11112	11110

Рисунок 3.10 - Концентрационные зависимости удельного электросопротивления (а), термо-э.д.с. (б) и микротвердости твердых растворов $Gd_{5-x}Tm_xBi_3$; (x= 0.5÷4.5) (в) при 298 К.

На рисунке 3.10, а, б, в представлены концентрационные зависимости удельного электросопротивления и термо-э.д.с. твердых растворов Gd_{5-x}Tm_xBi₃; (x = 0.5÷4.5), которые указывают на их корреляцию с диаграммой состояния системы Gd₅Bi₃ – Tm₅Bi₃.

Следует отметить, что концентрационная зависимость микротвердостти твердых растворов $Gd_{5-x}Tm_xBi_3$; (x = 0.5÷4.5), в отличие от аналогичной зависимости твердых растворов систем $Gd_5Bi_3 - Ln_5Bi_3$ (Ln = Tb, Dy, Ho, Er), изменяется почти линейно (рисунок 3.10, в).

Во всем диапазоне концентраций удельное электросопротивление и термо-э.д.с. твердых растворов $Gd_{5-x}Tm_xBi_3$, (x = 0.5÷ 4.5), составляет 4.85÷7.42·10⁻⁶ Ом·м, (-8.6) ÷ (11.5) мкВ/К, соответственно.

3.1.6 Диаграмма состояния системы Gd₅Bi₃ – Lu₅Bi₃

Диаграмм состояния систем Gd₅Bi₃ – Ln₅Bi₃, построенная по данным ДТА, РФА и MCA приведена на рисунке 3.11.

Как видно из рисунка, данная диаграмма схожа с диаграммами состояния систем $Gd_5Bi_3 - Ln_5Bi_3$ (Ln = Tb, Dy, Ho, Er, Tm). В системе образуется ряд изоструктурных твердых растворов $Gd_{5-x}Lu_xBi_3$; (x= 0.5-4.5), (таблица 3.6).

В Приложении, таблица 10 приведены результаты расчета дифрактограммы твердого раствора Gd₃Lu₂Bi₃ (40 мол. % Lu₅Bi₃).

Удельное электросопротивление и термо-э.д.с. твердых растворов $Gd_{5-x}Lu_xBi_3$; (x= 0.5÷4.5), во всем диапазоне концентраций, изменяется в пределах (3,75÷7,42) ·10⁻⁶ Ом·м, (-7.8) ÷ (-11,5) мкВ/К, соответственно. При этом концентрационные зависимости удельного электросопротивлени и термоэ.д.с. твердых растворов коррелируют с диаграммой состояния системы $Gd_5Bi_3 - Lu_5Bi_3$.

Концентрационная зависимость микротвердости твердых описываетя максимумом, приходяший на твердый раствор, содержащий 10 мол. % Lu₅Bi₃.

Рисунок 3.11 - Диаграмма состояния системы Gd₅Bi₃ – Lu₅Bi₃.

Таблица 3.6 - Кристаллохимические характеристики твердых растворов системы $Gd_5Bi_3 - Lu_5Bi_3$. Сингония – ромбическая типа Y_5Bi_3

Твердые растворы	Параметр элементарной ячейки, ±0.0005 нм			Плотность, кг/м ³	
	a	В	С	расчет.	экспер.
1	2	3	4	5	6
$Gd_{4.5}Lu_{0.5}Bi_3$	0.8216	0.9642	1.2642	9432	9428
Gd ₄ LuBi ₃	0.8198	0.9654	1.2498	9609	9588
Gd _{3.5} Lu _{1.5} Bi ₃	0.8172	0.9672	1.2386	9768	9748
Gd ₃ Lu ₂ Bi ₃	0.8152	0.9676	1.2288	9928	9912
Gd _{2.5} Lu _{2.5} Bi ₃	0.8138	0.9692	1.2196	10063	10060
Gd ₂ Lu ₃ Bi ₃	0.8116	0.9705	1.1976	10325	10316
Gd _{1.5} Lu _{3.5} Bi ₃	0.8096	0.9716	1.2022	10380	10372

1	2	3	4	5	6
GdLu ₄ Bi ₃	0.8075	0.9736	1.1776	10647	10642
$Gd_{0.5}Lu_{4.5}Bi_3$	0.8062	0.9742	1.1648	10839	10834

Рис. 3.12. - Концентрационные зависимости удельного электросопротивления (а), термо-э.д.с. (б) и микротвердости твердых растворов Gd_{5-x}Lu_xBi₃; (x= 0.5÷4.5) (в) при 298 К.

3.2 Электрофизические свойства висмутидов Ln₅Bi₃ (Ln = Gd, Tb, Dy, Ho, Er, Tm, Lu) и твердых растворов систем Gd₅Bi₃ – Ln₅Bi₃ (Ln = Tb, Dy, Ho, Er, Tm, Lu)

С целью установления электропроводности висмутидов Ln₅Bi₃, (Ln = Gd, Tb, Dy, Ho, Er, Tm, Lu) и твердых растворов, систем Gd₅Bi₃ – Ln₅Bi₃ (Ln = Tb, Dy, Ho, Er, Tm, Lu), изучены их электрофизические свойства (удельное электросопротивление и термо-э.д.с.) в диапазоне температур 298-773 К.

Исследования температурной и коцентрационной зависимости электросопротивления (ρ) и термо-э.д.с.(α) висмутидов Ln₅Bi₃ (Ln = Gd, Tb, Dy, Ho, Er, Tm, Lu) и твёрдых растворов систем Gd₅Bi₃ – Ln₅Bi₃ (Ln = Tb, Dy, Ho, Er, Tm, Lu), проводили на установке, приведенрой в Главе.2, разд. 2.2.5.

На рисунках 3.13-3.16 и в таблице. 3.7 приведены результаты исследования электрофизических свойств висмутидов Ln_5Bi_3 , (Ln = Gd, Tb, Dy, Ho, Er, Tm, Lu) и некоторых твердых растворов систем Gd_5Bi_3 – Ln_5Bi_3 (Ln = Tb, Dy, Ho, Er, Tm, Lu) в диапазоне темпертаур 298-773 К.

Как видно из рисунков, температурная зависимость удельного электросопротивления и термо-э.д.с. указанных висмутидов и твердых растворов в дипазоне 298-773 К изменяется линейно, что указывает на их металличсескую проводимость.

В таблице 3.7. приведены значения удельного сопротивления, термоэ.д.с. РЗЭ, висмутидов Ln_5Bi_3 , (Ln = Gd, Tb, Dy, Ho, Er, Tm, Lu) и твердых растворов систем Gd_5Bi_3 – Ln_5Bi_3 (Ln = Tb, Dy, Ho, Er, Tm, Lu) при комнатной температуре. Из таблицы следует, что электропроводность висмутидов и твердых растворов на порядок меньше электропроводности РЗЭ.

3.3 Обсуждение результатов

Малоизученность висмутидов РЗЭ отличных от эквиатомного состава, с нашей точки зрения, объясняется слабой разработкой методик их синтеза.

Рисунок 3.13 - Температурная зависимость удельного электросопротивления висмутидов в диапазоне 298-773 К: 1- Gd_5Bi_3 , 2- Tb_5Bi_3 , 3- Dy_5Bi_3 , 4- Ho_5Bi_3 , 5- Er_5Bi_3 , 6- Tm_5Bi_3 , 7- Lu_5Bi_3 .

Рисунок 3.14 - Температурная зависимость термо-э.д.с. висмутидов в диапазоне 298-773 К: 1- Gd₅Bi₃, 2- Tb₅Bi₃, 3- Dy₅Bi₃, 4- Ho₅Bi₃, 5- Er₅Bi₃, 6- Tm₅Bi₃, 7- Lu₅Bi₃.

Рисунок 3.15- Температурная зависимость удельного электросопротивления твердых растворов в диапазоне 298-773 К: $1-Gd_{4.5}Tb_{0.5}Bi_3$, $2-Gd_{3.5}Dy_{1.5}Bi_3$, $3-GdHo_4Bi_3$, $4-Gd_2Er_3Bi_3$, $5-Gd_{1.5}Tm_{3.5}Bi_3$, $6-Gd_{0.5}Lu_{4.5}Bi_3$.

Рисунок 3.16 - Температурная зависимость термо-э.д.с. твердых растворов в диапазоне 298-773 К: $1-Gd_{4.5}Tb_{0.5}Bi_3$, $2-Gd_{3.5}Dy_{1.5}Bi_3$, $3-GdHo_4Bi_3$, $4-Gd_2Er_3Bi_3$, $5-Gd_{1.5}Tm_{3.5}Bi_3$, $6-Gd_{0.5}Lu_{4.5}Bi_3$.

Таблица 3.7 - Электрофизические свойства РЗЭ, висмутидов Ln₅Bi₃ и некоторых твердых растворов систем Gd₅Bi₃-- Ln₅Bi₃ (Ln = Tb, Dy, Ho, Er, Tm, Lu) при 298 К

РЗЭ, антимониды	ρ x ⁻ 10 ⁶ ,	σ x 10 ⁻⁵ ,	α,			
и висмутиды РЗЭ	Ом ' м	$OM^{-1} \cdot M^{-1}$	мкВ/К			
P3Э [95]						
Gd	1.40	7.14	-2.0			
Tb	1.16	8.62	-2.1			
Dy	0.91	10.98				
Но	0.94	10.63				
Er	0.86	11.62				
Tm	0.90	11.11				
Lu	0.68	14.70				
	висмути,	ды РЗЭ	I			
Gd ₅ Bi ₃	7.42	1.34	-11.5			
Tb ₅ Bi ₃	6.68	1.49	-8.4			
Dy ₅ Bi ₃	5.56	1.79	-7.2			
Ho ₅ Bi ₃	5.48	1.82	-7.6			
Er ₅ Bi ₃	4.25	2.35	-6.5			
Tm ₅ Bi ₃	4.85	2.06	-8.6			
Lu ₅ Bi ₃	3.75	2.66	-7.8			
Твердые растворы						
$Gd_{4.5}Tb_{0.5}Bi_3$	7.30	1.37	-11.2			
Gd _{3.5} Dy _{1.5} Bi ₃	6.80	1.47	-10.3			
GdHo ₄ Bi ₃	5.90	1.69	-8.5			
Gd ₂ Er ₃ Bi ₃	5.70	1.75	-7.8			
$Gd_{1.5}Tm_{3.5}Bi_3$	5.50	1.82	-9.0			
$Gd_{0.5}Lu_{4.5}Bi_3$	4.14	2.41	-8.1			

Известно, что синтез гомогенных и чистых образцов требует соблюдения ряда требований:

-синтез висмутидов должен проводиться в условиях вакуума или инертной среды, исключающих окисление РЗЭ и висмута;

- материал тигля не должен взаимодействовать с исходными компонентами -РЗЭ и висмутом, а также с продуктом реакции;

 поскольку при относительно высоких температурах давление паров легкоплавкого висмута достаточно высокое, синтез необходимо проводить в условиях, исключающих его испарение из зоны реакции.

Установлено, что продукты непосредственного взаимодействия РЗЭ с висмутом в процессе образования твёрдых растворов $Gd_{5-x}Ln_xBi_3$ (Ln = Tb, Dy, Ho, Er, Tm, Lu; x = 0.5÷4.5), в диапазоне температур 673-823 К

(Глава 2, таблица 2.1) в основном состоят из РЗЭ и моновисмутидов соответствующих РЗЭ. По мере роста температуры, наряду с моновисмутидами, образуются висмутиды Ln_5Bi_3 (Ln = Tb, Dy, Ho, Er, Tm, Lu), доля которых в продуктах взаимодействия РЗЭ с висмутом в диапазоне температур 973-1173 К растёт.

Образование твёрдых растворов $Gd_{5-x}Ln_xBi_3$ (Ln = Tb, Dy, Ho, Er, Tm, Lu; x = 0.5÷4.5), в продуктах взаимодействия РЗЭ с висмутом, зафиксировано при температуре 1173 К.

В диапазоне температур 1375-1573 К продукты взаимодействия РЗЭ с висмутом двухфазны и состоят из висмутидов Ln_5Bi_3 (Ln = Gd, Tb, Dy, Ho, Er, Tm, Lu) и твёрдых растворов $Gd_{5-x}Ln_xBi_3$ (Ln = Tb, Dy, Ho, Er, Tm, Lu; x = 0.5÷4.5). При этом продукты взаимодействия, выдержанные при температуре 1673 К в течение 3±0.5 часов, представляют собой однофазные образцы твёрдых растворов $Gd_{5-x}Ln_xBi_3$ (Ln = Tb, Dy, Ho, Er, Tm, Lu; x = 0.5÷4.5).

Таким образом, проведенное исследование указывает на постадийный процесс образовании твердых растворов систем $Gd_5Bi_3 - Ln_5Bi_3$ (Ln = Tb, Dy, Ho, Er, Tm, Lu) по реакциям:

 $Ln + Bi \rightarrow LnBi;$ $2Ln + 3LnBi \rightarrow Ln_5Bi_3 (Ln = Gd, Tb, Dy, Ho, Er, Tm, Lu);$ $Gd_{5-x}Bi_{3-y} + Ln_xBi_y \rightarrow Gd_{5-x}Ln_xBi_3 (Ln = Tb, Dy, Ho, Er, Tm, Lu);$ $x = 0.5 \div 4.5; y = 0.3 \div 2.7)$

Полученные результаты по исследованию процесса взаимодействия РЗЭ с висмутом, дали нам возможность разработать следующие способа получения твердых растворов $Gd_{5-x}Ln_xBi_3$ (Ln = Tb, Dy, Ho, Er, Tm, Lu; $x = 0.5 \div 4.5$). (см. Главу 2, раздел 2.1):

- непосредственным взаимодействием РЗЭ и висмута;

- посредством заранее синтезированных висмутидов Ln_5Bi_3 (Ln = Gd, Tb, Dy, Ho, Er, Tm, Lu).

Отметим, что физико-химические свойства твердых растворов

 $Gd_{5-x}Ln_xBi_3$ (Ln = Tb, Dy, Ho, Er, Tm, Lu; x = 0.5÷4.5) исследовались на образцах, полученных вторым способом. Данный способ получения указанных твердых растворов, по сравнению с первым, имеет следующие преимущества:

 во-первых, поскольку в висмутидах Ln₅Bi₃ (Ln = Gd, Tb, Dy, Ho, Er, Tm, Lu) легкоплавкий висмут находится в связанной форме, это исключает его испарение из зоны реакции;

- во-вторых, позволяет сократить время синтез твёрдых растворов $Gd_{5-x}Ln_xBi_3$ (Ln = Tb, Dy, Ho, Er, Tm, Lu);x = $0.5 \div 4.5$).

Результаты исследования диаграмм состояния систем $Gd_5Bi_3 - Ln_5Bi_3$ (Ln = Tb, Dy, Ho, Er, Tm, Lu) показали, что все они однотипны. Во всех системах образуются твердые растворы $Gd_{5-x}Ln_xBi_3$ (Ln = Tb, Dy, Ho, Er, Tm, Lu; x = 0.5÷4,5), кристаллизующихся, как и исходные компоненты, в ромбической сингонии типа Y₅Bi₃ и плавящихся инконгруэнтно.

Согласно существующей теории [44], образование твердых растворов в системах определяется геометрическим, включающий размерный и структурный фактор, а также электрохимическим. Размерный фактор –фактор Юм-Розери способствует образованию твёрдых растворов, если атомные ра-

диусы компонентов разнятся не более чем на 10- 15%. По требованию структурного фактора кристаллические структуры компонентов должны быть подобными или иметь близкое строение.

Под электрохимическим фактором понимается разность электроотрицательности исходных компонентов. При образовании твёрдых растворов разность электроотрицательности компонентов, не должна превышать 0,6 единиц.

С нашей точки зрения, образованию в системах Gd_5Bi_3 – Ln_5Bi_3 (Ln = Tb, Dy, Ho, Er, Tm, Lu) твердых растворов замещения $Gd_{5-x}Ln_xBi_3$ (Ln = Tb, Dy, Ho, Er, Tm, Lu; x = $0.5 \div 4,5$) благоприятствует геометрический фактор – размерный и структурный. Так, атомные радиусы РЗЭ при образовании твёрдых растворов разнятся не более чем на 1-7%.

Структурный фактор также способствует образованию в указанных системах твёрдых растворов $Gd_{5-x}Ln_xBi_3$ (Ln = Tb, Dy, Ho, Er, Tm, Lu; x = 0.5-4.5), поскольку исходные компоненты – Ln_5Bi_3 (Ln = Gd, Tb, Dy, Ho, Er, Tm, Lu) изоструктурны с твёрдыми растворами и кристаллизуются в одной и той же структуре -ромбической типа Y_5Bi_3

Электрохимический фактор вряд ли оказывает влияние на образование твердых растворов $Gd_{5-x}Ln_xBi_3$ (Ln = Tb, Dy, Ho, Er, Tm, Lu; x = 0.5-4.5), поскольку исходными компонентами при их образовании являются не простые компоненты- РЗЭ и висмут, а висмутиды Ln_5Bi_3 (Ln = Gd, Tb, Dy, Ho, Er, Tm, Lu).

Результаты исследования электрофизических свойств висмутидов Ln_5Bi_3 (Ln = Gd, Tb, Dy, Ho, Er, Tm, Lu), и твердых растворов систем Gd_5Bi_3 – Ln_5Bi_3 (Tb, Dy, Ho, Er, Tm, Lu), (таблица 3.7 и рисунки 3.13-3.16), показали, что им свойственна металлическая проводимость. При этом установлена корреляция концентрационной зависимости электрофизических свойств (удельное электросопротивление и термо- э.д.с.) твердых растворов (рисунки 3.2, 3.4, 3.6, 3.8, 3.10, 3.12) с соответствующими им системами.

Согласно таблицы 3.7, электропроводность твердых растворов

Gd_{5-x}Ln_xBi₃ (Ln = Tb, Dy, Ho, Er, Tm, Lu; x = 0.5-4.5), близка к электропроводности висмутидов Ln₅Bi₃ (Ln = Gd, Tb, Dy, Ho, Er, Tm, Lu), но меньше электропроводности P3Э, а также серебра, меди и алюминия ($6.80 \cdot 10^7$, $6.45 \cdot 10^7$, $4.0 \cdot 10^7$ Om⁻¹·m⁻¹) [96].

Относительно низкая электропроводность, свойственная висмутидам Ln_5Bi_3 (Ln = Gd, Tb, Dy, Ho, Er, Tm, Lu) и твердым растворам $Gd_{5-x}Ln_xBi_3$ (Ln = Tb, Dy, Ho, Er, Tm, Lu; x = 0.5-4.5), с нашей точки зрения, определяется магнитной составляющей общего электросопротивления и природой их хи-мической связи.

Известно, что в парамагнитной области общее удельное электросопротивление РЗЭ складывается из остаточного, фононного и магнитного удельного сопротивления [97]. Темпертуронезависимое остаточное удельное электросопротивление возникает от рассеяния электронов на нейтральных примесях и дефектах кристаллической решетки; Фононное электросопротивление связано с рассеянием электронов на акустических колебаниях решетки (фононах). Магнитное удельное электросопротивление возникает в результате взаимодействия электронов проводимости с локализованными магнитными моментами 4f – электронов ионов РЗЭ. Это взаимодействие зависит, вопервых, от относительной ориентации спина s- проводимости и, во-вторых, от результирующего спина 4f – слоя.

Согласно существующий теории [97], из-за того, что при 0 К 4f – электроны упорядочены магнитное сопротивление равно нулю. При этом магнитный порядок, с повышением температуры, нарушается и появляется магнитное сопротивление, которое растет при приближении к точке магнитного упорядочения. В парамагнитной области упорядочение 4f-слоя разрушается и магнитное сопротивление приобретает свое максимальное значение и при этом становится постоянным.

Гетеродесмичный характер их химической связи в структурах висмутидов Ln_5Bi_3 (Ln = Gd, Tb, Dy, Ho, Er, Tm, Lu) и твердых растворов $Gd_{5-x}Ln_xBi_3$ (Ln = Tb, Dy, Ho, Er, Tm, Lu; x = 0.5-4.5), может также оказать
влияние на их электрофизические свойства.

Металлическую проводимость указанных висмутидов и твердых растворов, по всей видимости, обуславливает металлическая связь Gd-Ln (Ln = Tb, Dy, Ho, Er, Tm, Lu), имеющаяся в их структуре.

Поскольку электропроводность всех исследованных висмутидов и твердых растворов меньше электропроводности РЗЭ можно заключить, что определенная часть электронов локализована, из-за наличия в них еще и ионной связи Ln – Bi (Ln = Tb, Dy, Ho, Er, Tm, Lu).

Кроме того, на металлическую природу твердых растворов $Gd_{5-x}Ln_xBi_3$ (Ln = Tb, Dy, Ho, Er, Tm, Lu; x = 0.5-4.5) указывают и концентрационные зависимости микротвердости (рисунки 3.2, 3.4, 3.6, 3.8, 3.10, 3.12). Кривые концентрационной зависимости микротвердости твердых растворов описываются максимумами, соответствующие составам, содержащим 40 мол.% Tb₅Bi₃, 30 мол.% Dy₅Bi₃, 35 мол.% Ho₅Bi₃, 20 мол.% Er₅Bi₃ и 10 мол.% Lu₅Bi₃, что свойственно металлическим системам [93]. Согласно этой работы такое изменение микротвердости связано с усилением жесткости кристаллической решетки.

Длина связей Gd-Gd, Tb-Tb, Dy-Dy, Ho-Ho, Er-Er, Tm-Tm и Lu-Lu в висмутидах Ln₅Bi₃ (Ln = Gd, Tb, Dy, Ho, Er, Tm, Lu) в среднем составляет 0.364 нм, а в структуре твердых растворов Gd_{5-x}Ln_xBi₃ (Ln = Tb, Dy, Ho, Er, Tm, Lu; x = 0.5-4.5) дисперсия длины этих же связей составляет до 2%. Добавим, что жесткость кристаллической решетки в твердых растворах может придать и связь Ln- Bi, которая в среднем составляет 0.308 нм. Возможно, наибольшее влияние этой связи на жесткость кристаллической решетки твердых растворов приходится на составы, содержащие 40 мол. % Tb₅Bi₃, 30 мол.% Dy₅Bi₃, 35 мол.% Ho₅Bi₃, 20 мол.% Er₅Bi₃ и 10 мол.% Lu₅Bi₃.

ГЛАВА 4. МАГНИТНЫЕ СВОЙСТВА ВИСМУТИДОВ Ln₅Bi₃ (Ln = Gd, Tb, Dy, Ho, Er, Tm, Lu) И ТВЕРДЫХ РАСТВОРОВ СИСТЕМ Gd₅Bi₃ – Ln₅Bi₃ (Ln = Tb, Dy, Ho, Er, Tm, Lu)

4.1 Результаты исследования магнитных свойств висмутидов Ln₅Bi₃ (Ln = Gd, Tb, Dy, Ho, Er, Tm, Lu) и твёрдых растворов систем Gd₅Bi₃ – Ln₅Bi₃ (Ln = Tb, Dy, Ho, Er, Tm, Lu)

Температурную зависимость молярной восприиимчивости висмутидов Ln_5Bi_3 (Ln = Gd, Tb, Dy, Ho, Er, Tm, Lu) и твердых растворов $Gd_{5-x}Ln_xBi_3$ (Ln = Tb, Dy, Ho, Er, Tm, Lu; x = 0.5-4.5) исследовали в диапазине температур 298-773 К.

Указанные твердые растворы и висмутиды, для проведения иследований, получали по методике, приведенной в Главе 2, разделе 2.1, таблицах 2.3 и 2.4.

4.1.1 Магнитные свойства висмутидов Ln_5Bi_3 (Ln = Gd, Tb, Dy,

Но, Er, Tm, Lu) в диапазоне температур 298-773 К.

На рисунках 4.1- 4.4. представлены температурные зависимости молярной магнитной восприимчивости висмутидов Ln₅Bi₃ (Ln = Gd, Tb, Dy, Ho, Er, Tm, Lu), для которых во всем исследованном диапазоне температур выполняется закон Кюри-Вейсса, свойственный парамагнитным веществам и выражающийся формулой [98]:

$$\chi_{\rm M} = C/T - \theta_{\rm p} , \qquad (4.1)$$

где $\chi_{\rm M}$ – молярная магнитная восприимчивость;

С – константа;

Т – температура;

θ_р – парамагнитная температура Кюри.

Парамагнитную температуру Кюри висмутидов РЗЭ определяли экстраполяцией линейной части зависимости обратной молярной восприимчивости к оси температур.

Рисунок 4.1 - Температурная зависимость обратной молярной магнитной восприимчивости Gd_5Bi_3 (1), Tb_5Bi_3 (2), Dy_5Bi_3 (3) в диапазоне температур 298-773 К.

Рисунок 4.2 - Температурная зависимость обратной молярной магнитной восприимчивости Ho_5Bi_3 (1), Er_5Bi_3 (2) в диапазоне температур 298-773 К.

Рисунок 4.3 - Температурная зависимость обратной молярной магнитной восприимчивости Tm₅Bi₃ в диапазоне температур 298-773 К.

Рисунок 4.4 - Температурная зависимость обратной молярной магнитной восприимчивости Lu₅Bi₃ в диапазоне температур 298-773 К.

Магнитные характеристики висмутидов приведены в таблице 4.1. Из таблицы видно, что среди висмутидов РЗЭ наиболее высокая температура Кюри свойственна висмутидам Gd₅Bi₃, Tb₅Bi₃, и Dy₅Bi₃.

Висмутиды	χ _м x 10 ⁶	θ _p , K	$\mu_{9\phi\phi}$. x 10^{24} A·m ²
	при 298 К		
Gd ₅ Bi ₃	280526.0	270	73.54
Tb ₅ Bi ₃	78289.4	146	90.14
Dy ₅ Bi ₃	62690.5	75	98.1
Ho ₅ Bi ₃	50028.0	40	94.22
Er_5Bi_3	39908.2	15	88.2
Tm ₅ Bi ₃	26318.2	12	68.7
Lu ₅ Bi ₃	5051.2	5	31.9

Таблица 4.1 - Магнитные характеристики висмутидов РЗЭ

Рассчитанные по формуле $\mu_{3\phi\phi} = 26,32 \cdot 10^{-24} \cdot [\chi_{M} \cdot (T-\theta_{p})]^{1/2} \text{ A} \cdot \text{m}^{2}, [95]$ эффективные магнитные моменты ($\mu_{3\phi\phi}$) ионов РЗЭ оказались близки к теоретическим значениям трехзарядных ионов РЗЭ (таблица. 4.1).

4.1.2 Магнитные свойства твёрдых растворов систем Gd₅Bi₃ - Ln₅Bi₃ (Ln= Gd, Tb, Dy, Ho, Er, Tm, Lu)

Твердые растворы $Gd_{5-x}Ln_xBi_3$ (Ln = Gd, Tb, Dy, Ho, Er, Tm, Lu; x = 0.5÷4.5) в диапазоне температур 298-773 К проявляют парамагнитные свойства. Температурная зависимость обратной величены молярной магнитной восприимчивости твердых растворов во всем диапазоне температур подчиняется закону Кюри-Вейсса (рисунки 4.5-4.10, a, б).

Магнитные характеристики твердых растворов приведены в таблице 4.2. Из таблицы следует, что с ростом концентрации гадолиния в твердых растворах наблюдается увеличение значений парамагнитных температур Кюри. При этом парамагнитная температура Кюри (θ_p) твердых рас-

Рисунок 4.5 - Температурная зависимость обратной молярной магнитной восприимчивости твердых растворов $Gd_{5-x}Tb_xBi_3$, содержащих (1) -10, (2) -20, (3) -30, (4) -40, (5) -50, (6) -60, (7) -70, (8) -80, (9) -90 мол. % Tb₅Bi₃, в диапазоне 298-400 К (а) и 400-773 К (б).

Рисунок 4.6 - Температурная зависимость обратной молярной магнитной восприимчивости твердых растворов Gd_{5-x}Dy_xBi₃, содержащих (1)-10, (2)-20, (3)-30, (4)-40, (5)-50, (6)-60, (7)-70, (8)-80, (9)-90 мол.% Dy₅Bi₃ в диапазоне 298-400 К (а) и 400-773 К (б).

Рисунок 4.7 - Температурная зависимость обратной молярной магнитной восприимчивости твердых растворов Gd_{5-x}Ho_xBi₃, содержащих (1)-10, (2)-20, (3)-30, (4)-40, (5)-50, (6)-60, (7)-70, (8)-80, (9) -90 мол. % Ho₅Bi₃ в диапазоне 298-400 К (а) и 400-773 К (б).

Рисунок 4.8 - Температурная зависимость обратной молярной магнитной восприимчивости твердых растворов Gd_{5-x}Er_xBi₃, содержащих (1)-10, (2)-20, (3)-30, (4)-40, (5)-50, (6)-60, (7)-70, (8)-80, (9)-90 мол.% Er₅Bi₃, в диапазоне 298-400 К (а) и 400-773 К (б).

Рисунок 4.9 - Температурная зависимость обратной молярной магнитной восприимчивости твердых растворов $Gd_{5-x}Tm_xBi_3$, содержащих (1) -10, (2) - 20, (3) -30, (4) -40, (5) -50, (6) -60, (7) -70, (8) -80, (9) -90 мол. % Tm_5Bi_3 в диапазоне 298-400 К (а) и 400-773 К.

Рисунок 4.10 - Температурная зависимость обратной молярной магнитной восприимчивости твердых растворов Gd_{5-x}Lu_xBi₃, содержащих (1)-10, (2)-20, (3)-30, (4)-40, (5)-50, (6)-60, (7)-70, (8)-80, (9)-90 мол.% Lu₅Bi₃ в диапазоне 298-400 К (а) и 400-773 К (б).

800 T, K

Твердые раство-	$\gamma_{\rm M} \ge 10^6$	θ _n , K	μ_{abb} , x 10 ²⁴ , A·m ²					
ры	при 298 К	۲,	г -эфф. у					
1	2	3	4					
	$Gd_{5-x}Tb_xBi_3, (x = 0.5 \div 4.5)$							
$Gd_{4.5}Tb_{0.5}Bi_3$	225555.5	262	74.7					
Gd ₄ TbBi ₃	127424.2	232	76.0					
Gd _{3.5} Tb _{1.5} Bi ₃	108695.6	220	76.4					
Gd ₃ Tb ₂ Bi ₃	95238.2	204	78.4					
Gd _{2.5} Tb _{2.5} Bi ₃	81300.0	192	76.9					
Gd ₂ Tb ₃ Bi ₃	68493.2	184	73.2					
Gd _{1.5} Tb _{3.5} Bi ₃	63291.4	172	73.4					
GdTb ₄ Bi ₃	59523.8	162	74.6					
Gd _{0.5} Tb _{4.5} Bi ₃	52910.3	154	72.4					
	Gd _{5-x} Dy _x Bi ₃	$x = 0.5 \div 4.5$						
Gd _{4.5} Dy _{0.5} Bi ₃	92801.4	208	75.76					
Gd ₄ DyBi ₃	73336.2	178	77.25					
Gd _{3.5} Dy _{1.5} Bi ₃	65789.4	165	77.6					
Gd ₃ Dy ₂ Bi ₃	56179.9	148	76.1					
Gd _{2.5} Dy _{2.5} Bi ₃	51020.4	138	74.9					
Gd ₂ Dy ₃ Bi ₃	45454.5	126	73.3					
Gd _{1.5} Dy _{3.5} Bi ₃	40983.6	108	73.1					
GdDy ₄ Bi ₃	37878.7	95	72.7					
Gd _{0.5} Dy _{4.5} Bi ₃	35211.2	85	71.8					
	Gd _{5-x} Ho _x Bi	$_{3}$, (x = 0.5÷4.5)						
Gd _{4.5} Ho _{0.5} Bi ₃	104102.5	220	77.74					
Gd ₄ HoBi ₃	76607.1	186	74.74					
Gd _{3.5} Ho _{1.5} Bi ₃	66089.8	160	79.2					
Gd ₃ Ho ₂ Bi ₃	54945,0	128	80.2					
Gd _{2.5} Ho _{2.5} Bi ₃	52631,5	114	81.06					

Таблица - 4.2. Магнитные характеристики твердых растворов $Gd_{5-x}Ln_xBi_3$;

(Tb, Dy, Ho, Er, Tm, Lu; $x = 0.5 \div 4.5$)

1	2	3	4			
$Gd_2Ho_3Bi_3$	45045,0	102	77.9			
Gd _{1.5} Ho _{3.5} Bi ₃	40816,3	86	77.15			
GdHo ₄ Bi ₃	36496.3	74	75.02			
Gd _{0.5} Ho _{4.5} Bi ₃	34013.6	66	73.63			
	Gd _{5-x} Er _x Bi ₃ ,	$(x = 0.5 \div 4.5)$				
$Gd_{4.5}Er_{0.5}Bi_3$	77500.4	194	74.4			
Gd_4ErBi_3	60071.4	158	85.3			
$Gd_{3.5}Er_{1.5}Bi_3$	51282.0	124	78.3			
Gd ₃ Er ₂ Bi ₃	48309.2	98	81.51			
Gd _{2.5} Er _{2.5} Bi ₃	46511.6	82	83.18			
Gd ₂ Er ₃ Bi ₃	44843.0	68	84.2			
$Gd_{1.5}E_{3.5}Bi_3$	43478.2	58	84.76			
GdEr ₄ Bi ₃	41386.8	46	84.76			
$Gd_{0.5}Er_{4.5}Bi_3$	40874.5	35	86.0			
	Gd _{5-x} Tm _x B	$i_{3,(x = 0.5 \div 4.5)}$				
$Gd_{4.5}Tm_{0.5}Bi_3$	53571.4	158	69.55			
Gd ₄ TmBi ₃	44470.5	128	72.15			
$Gd_{3.5}Tm_{1.5}Bi_3$	41388.8	118	71.6			
Gd ₃ Tm ₂ Bi ₃	39462.3	112	71.03			
$Gd_{2.5}Tm_{2.5}Bi_3$	36089.2	96	70.85			
Gd ₂ Tm ₃ Bi ₃	32117.2	76	70.0			
$Gd_{1.5}Tm_{3.5}Bi_3$	30521.7	68	69.55			
GdTm ₄ Bi ₃	29075.6	60	68.9			
$Gd_{0.5}Tm_{4.5}Bi_3$	27007.6	44	68.7			
$Gd_{5-x}Lu_{x}Bi_{3}, (x = 0.5 \div 4.5)$						
$Gd_{4.5}Lu_{0.5}Bi_3$	61590.9	210	61.01			
Gd ₄ LuBi ₃	25069.4	154	49.80			
$Gd_{3.5}Lu_{1.5}Bi_3$	17200.0	126	45.07			
Gd ₃ Lu ₂ Bi ₃	14059.2	102	43.49			

1	2	3	4
Gd _{2.5} Lu _{2.5} Bi ₃	11626.8	86	41.17
Gd ₂ Lu ₃ Bi ₃	9652.6	68	39.13
$Gd_{1.5}Lu_{3.5}Bi_3$	8196.7	52	37.28
GdLu ₄ Bi ₃	6801.5	34	35.14
Gd _{0.5} Lu _{4.5} Bi ₃	5760.3	18	33.29

ратворов $Gd_{5-x}Ln_xBi_3$ (Ln = Gd, Tb, Dy, Ho, Er, Tm, Lu; x = 0.5÷4.5) меньше, чем $\theta_p Gd_5Bi_3$, но превышает значение $\theta_p Ln_5Bi_3$ (Ln = Tb, Dy, Ho, Er, Tm, Lu).

4.2 Обсуждение результатов

Исследованием магнитных свойств висмутидов Ln_5Bi_3 (Ln = Gd, Tb, Dy, Ho, Er, Tm, Lu) и твердых растворов систем $Gd_5Bi_3 - Ln_5Bi_3$ (Ln = Tb, Dy, Ho, Er, Tm, Lu) установлено, что они с РЗЭ проявляют близкие магнитные свойства. Указанные висмутиды и твёрдые растворы, как и РЗЭ, в обычных условиях являются парамагнитными. Это даёт право считать, что магнетизм висмутидов и твердых растворов, также, как и в РЗЭ определяется взаимодействием РККИ (Рудермана-Киттеля-Касуи-Иосиды) [98-101].

Согласно теории РККИ [98], магнетизм РЗЭ возникает под влиянием косвенного обменного взаимодействия, посредством электронов проводимости. Из-за того, что радиус 4f-оболочки РЗЭ составляет около 1/10 межатомного расстояния, прямое взаимодействие между 4f-оболочками соседних атомов невозможно. Поэтому взаимодействие 4f-электронов осуществляется путем поляризации s и р электронов проводимости, посредством спина 4f-электрона.

В теории РККИ, при объяснении механизма обмена, особенное внимание отводится s – f обменному взаимодействию. Считается, что в структуре РЗЭ имеются две разновидности электронов – электроны, не скомпенсированных 4f-оболочек, которые в основном определяют магнетизм РЗЭ и коллективизированные s и p электроны, отвечающие за электрические свойства РЗЭ. Под влиянием s – f обмена, локализованные f – электроны поляризуют спины электронов проводимости. При этом s – f обменное взаимодействие, зависящее от направления спинов, способствует поляризации спинов электронов проводимости осцилляционного характера.

Парамагнитные свойства висмутидов Ln_5Bi_3 (Ln = Gd, Tb, Dy, Ho, Er, Tm, Lu)₁ по-видимому, в основном обусловлены обменным взаимодействием между ионами Ln – Ln (Gd, Tb, Dy, Ho, Er, Tm, Lu), а твердых растворов $Gd_{5-x}Ln_xBi_3$ (Ln = Tb, Dy, Ho, Er, Tm, Lu; x = $0.5 \div 4.5$) обменным взаимодействием ионов Gd – Gd и Gd – Ln (Ln = Tb, Dy, Ho, Er, Tm, Lu).

В пользу этой точки зрения свидетельствуют значения парамагнитных температур Кюри (θ_p) твердых растворов Gd_{5-x}Ln_xBi₃ (Ln = Tb, Dy, Ho, Er, Tm, Lu; x = 0.5÷4.5) (таблицы 4.1÷4.8), которые за счет наличия в структуре обменного взаимодействия ионов по связи Gd – Gd, превышают значения θ_p висмутидов Ln₅Bi₃ (Ln = Tb, Dy, Ho, Er, Tm, Lu), (таблица 4.1-4.8) и P3Э – Tb, Dy, Ho, Er, Tm, Lu, составляющих 232, 120, 85, 20, 10, 5 K [95], соответственно. Данное предположение подтверждает и рисунок 4.11, где видно, что с увеличением концентрации ионов гадолиния в твердых растворахGd_{5-x}Ln_xBi₃ (Ln = Tb, Dy, Ho, Er, Tm, Lu; x = 0.5÷4.5) их парамагнитная температура растет, за счет обменного взаимодействия ионов по связи Gd – Gd.

Сопоставление магнитных и электрофизических свойств висмутидов Ln_5Bi_3 (Ln = Gd, Tb, Dy, Ho, Er, Tm, Lu), твердых растворов $Gd_{5-x}Ln_xBi_3$ (Ln = Tb, Dy, Ho, Er, Tm, Lu; x = $0.5 \div 4.5$), полученных и исследованных в данной работе, с другими твердыми растворами, например, систем Gd_5Sb_3 - Ln_5Sb_3 (Ln = Tb, Dy, Ho), Gd_4Bi_3 - Ln_4Bi_3 (Ln = Pr, Nd, Tb), Gd_4Bi_3 - Ln_4Sb_3 (Ln = Pr, Nd, Gd, Tb, Dy, Yb), Gd_5Sb_3 - Ln_5Bi_3 (Ln = Pr, Nd) и твердыми растворами систем Gd_4Sb_3 . Ln_4Bi_3 (Ln = Pr, Nd, Tb, Yb) [39, 102-115], показывает их близкое сходство. Исходя из этого, можно предположить, что твердые растворы $Gd_{5-x}Ln_xBi_3$ (Ln = Tb, Dy, Ho), Er, Tm, Lu; x = $0.5 \div 4.5$), как P3Э и твердые растворы $Gd_{5-x}Ln_xSb_3$ (Ln = Tb, Dy, Ho) [104], которые при низких

Рисунок 4.11 - Концентрационная зависимость парамагнитной температуры Кюри твердых растворов систем: $Gd_5Bi_3 - Tb_5Bi_3$ (1), $Gd_5Bi_3 - Dy_5Bi_3$ (2), $Gd_5Bi_3 - Ho_5Bi_3$ (3), $Gd_5Bi_3 - Er_5Bi_3$ (4), $Gd_5Bi_3 - Tm_5Bi_3$ (5), $Gd_5Bi_3 - Lu_5Bi_3$ (6).

температурах проявляют ферримагнитное упорядочение, также при температурах ниже парамагнитной температуры Кюри магнетоупорядочены.

Из сказанного следует, что в диссертационной работе получены новые магнитные материалы –твердые растворы $Gd_{5}Ln_xBi_3$ (Ln = Tb, Dy, Ho, Er, Tm, Lu; x = $0.5 \div 4.5$).

Полученные результаты по электрофизическим и магнитным свойствам висмутидов Ln_5Bi_3 (Ln = Tb, Dy, Ho, Er, Tm, Lu) и твердых растворов $Gd_{5}Ln_xBi_3$ (Ln = Tb, Dy, Ho, Er, Tm, Lu; x = $0.5 \div 4.5$) позволяют дать некоторые рекомендации о перспективности их практического использования.

Как отмечалось выше, висмутиды Ln_5Bi_3 (Ln = Tb, Dy, Ho, Er, Tm, Lu) и твердые растворы $Gd_5 Ln_xBi_3$ (Ln = Tb, Dy, Ho, Er, Tm, Lu; x = 0.5÷4.5) проявляют близкие магнитные свойства с РЗЭ. Поэтому можно предположить об их использовании взамен РЗЭ, например, в криогенной технике в устройствах, работающих при температурах жидкого азота и гелия для усиления в них магнитного потока, а также как добавки в магнитные материалы для повышения магнитной индукции.

Висмутиды Ln_5Bi_3 (Ln = Tb, Dy, Ho, Er, Tm, Lu) и твердые растворы $Gd_5Ln_xBi_3$ (Ln = Tb, Dy, Ho, Er, Tm, Lu; x = $0.5 \div 4.5$) по электропроводности, занимающие промежуточное положение между проводниками и полупровдниками, могут быть использованы в электронной технике для создания термоэлементов и резисторов.

Акт по использованию материала диссертации в учебном процессе, а также акт испытания твердых растворов $Gd_{5}Tb_xBi_3$ (x = 0.5÷4.5) приведены в Приложении диссертации.

выводы

 Методами физико-химического анализа (рентгенофазовым и микроструктурным) исследован фазовый состав продуктов непосредственного взаимодействия РЗЭ с висмутом в широком диапазоне температур. Это позволило установить механизм образования твёрдых растворов в системах Gd₅Bi₃ – Ln₅Bi₃ (Ln = Tb, Dy, Ho, Er, Tm, Lu).

2. Разработаны два способа получения твердых растворов $Gd_{5-x}Ln_xBi_3$ (Ln = Gd, Tb, Dy, Ho, Er, Tm, Lu; x = $0.5 \div 4.5$): непосредственным взаимодействием РЗЭ с висмутом; с использованием в качестве висмутсодержащих компонентов, предварительно синтезированных висмутидов LnBi и Ln₅Bi₃ (Ln = Gd, Tb, Dy, Ho, Er, Tm, Lu).

3. Методами физико-химического анализа (дифференциального термического, рентгенофазового и микроструктурного) изучены и построены диаграммы состояния систем $Gd_5Bi_3 - Ln_5Bi_3$ (Ln = Tb, Dy, Ho, Er, Tm, Lu). Определены закономерности в их строении, проявляющиеся в том, что все диаграммы состояния указанных систем однотипны и в них образуется непрерывный изоструктурный ряд твердых растворов $Gd_5.Ln_xBi_3$ (Ln = Tb, Dy, Ho, Er, Tm, Lu; x = 0.5-4.5) замещения, кристаллизующихся в ромбической структуре типа анти- Y₅Bi₃.

4. Исследованием электрофизических свойств висмутидов Ln_5Bi_3 (Ln = Gd, Tb, Dy, Ho, Er, Tm, Lu) и твердых растворов $Gd_{5-x}Ln_xBi_3$ (Ln = Tb, Dy, Ho, Er, Tm, Lu; x = $0.5 \div 4.5$) установлено, что они проявляют металлическую проводимость. При этом концентрационная зависимость удельного электросопротивления термо-э.д.с. и микротвердости твердых растворов коррелирует с диаграммами состояния соответствующих им систем.

5. Разработаны магнитные материалы –твердые растворы $Gd_{5-x}Ln_xBi_3$ (Ln = Tb, Dy, Ho, Er, Tm, Lu; x = $0.5 \div 4.5$) с повышенными магнитными свойствами относительно висмутидов Ln_5Bi_3 (Ln = Tb, Dy, Ho, Er, Tm, Lu). Определены значения парамагнитных температур Кюри, эффективных магнитных моментов ионов РЗЭ указанных висмутидов и твердых растворов. Оценен тип магнитного упорядочения твердых растворов, а также выявлено, что магнитный порядок в них устанавливается по механизму обменного взаимодействия ионов РЗЭ - взаимодействию РККИ.

6. Показано, что висмутиды Ln_5Bi_3 (Ln = Gd, Tb, Dy, Ho, Er, Tm, Lu) и твердые растворы $Gd_{5-x}Ln_xBi_3$ (Ln = Tb, Dy, Ho, Er, Tm, Lu; x = 0.5÷4.5), могут быть использованы в криогенной технике для усиления магнитного потока и магнитной индукции в магнитных материалах и в электронной технике для создания термоэлементов и резисторов.

ЛИТЕРАТУРА

1. Рахимов, Х.А. Магнитные свойства висмутидов состава Ln₅Bi₃ (Ln = Gd, Tb, Dy, Ho, Er, Tm, Lu)/ Х.А. Рахимов, В.Д. Абулхаев, С.О. Убайдов //Материалы международной конференции «Комплексные соединения и аспекты их применения» - Душанбе, 2013. -С. 91- 93.

2. Gambino, R.J. Rare-earth-Sb and –Bi compounds with the Gd_4Sb_3 (anti-Th₃P₄) structure / R.J. Gambino / J. Less-Comm. Metals. -1967. -V.12. -No 5. -P. 344-352.

3. Абдусалямова, М.Н. Физикохимия антимонидов и висмутидов редкоземельных элементов / М.Н. Абдусалямова. // ЖВХО им. Менделеева -1981. -Т. 26. -№ 6. -С. 73-78.

4. Rare-earth bismuthides /K.Yoshihara, L.B. Taylor, L.D. Calvert, J.G. Despault // J. Less-Common Metals -1975. -V. 41. –No 2. -P. 329-337.

5. Borzone, G. Heat of formation of gadolinium-bismuth allos/G. Borzone A. Borsese, R. Ferro//Termochim. Acta. -1980.-V. 41. -No 2. -P. 175-180.

6. Hohnke, D. Rare-earth bismuthides with D₈ and Hf₅Sn₃Cu –type structures/ D. Hohnke, E. Parthe //J. Less-Common Metals. -1969. –V. 17. –No 3. -P. 291-296.

7. Абулхаев, В.Д. Диаграмма состояния системы Gd – Bi / В.Д. Абулхаев //Диаграммы состояния металлических систем: Тез. докл. V Всесоюзного. совещания -Звенигород, -1987. -С. 119.

8. Абулхаев, В.Д. Диаграмма состояния Gd – Bi / В.Д. Абулхаев //Изв.
 РАН. Металлы. -1993. - № 1. –С. 187-190.

9. Взаимодействие тербия с висмутом / В.Д.Абулхаев, М.Н. Абдусалямова, А.Г. Чуйко, С.С.Тимофеев//Тез. докл. V Всесоюз. конф. по кристаллохимии интерметаллических соединений. -Львов, -1989. -С. 124.

10. Абулхаев, В.Д. Диаграмма состояния Тb – Bi /B.Д. Абулхаев//Изв. РАН. Металлы. -1997. -№4. –С. 105-108.

11. Абулхаев, В.Д. Диаграмма состояния системы Dy – Ві /В.Д. Абулхаев, М.Н. Абдусалямова //Тез. докл. V Всесоюз. совещ. «Диаграммы состояния металлических систем». -Звенигород, -1987, -С. 131.

12. Абулхаев, В.Д. Диаграмма состояния системы Dy – Bi / В.Д. Абулхаев //Неорган. материалы. -1992. -Т. 28. -№ 9. -С. 1877-1881.

13. Heat of formation of disprosium-bismuth allos / A.Borsese, G.Borzone, R.Ferro, S.Delfino // J. Less-Common Metals. -1977. -V.55. -No1. -P. 115-120.

14. Абулхаев, В.Д. Фазовая диаграмма системы Но – Ві / В.Д. Абулхаев, С.С. Тимофеев //Тез. докл. V Всесоюз. конф. по химии и физике редкоземельных полупроводников. -Саратов, -1990. -Ч. II -С. 19.

15. Абулхаев, В.Д. Диаграмма состояния Но – Ві /В.Д. Абулхаев // Изв. РАН. Металлы. -1993. -№ 2. -С. 196-199.

16. Абулхаев, В.Д., Фазовая диаграмма системы Er – Ві /В.Д. Абулхаев, С.С. Тимофеев //Тез. докл. V Всесоюз. конф. по химии и физике редкоземельных полупроводников. -Саратов, -1990. -Ч.11. С. 16.

17. Абулхаев, В.Д. Диаграмма состояния системы Er – Ві /В.Д. Абулхаев //Неорган. материалы. -1992. -Т.28. -№ 10/11. С. 2111-2115.

18. Абулхаев, В.Д. Диаграмма состояния и свойства сплавов системы Tm – Bi / В.Д. Абулхаев //Неорган. Материалы. -2003. -Т. 39, -№ 1, -С. 54-57.

19. Абулхаев, В.Д. Диаграмма состояния Lu – Ві /В.Д. Абулхаев, И.Н. Ганиев //Изв. РАН. Металлы. -1995. -№ 2. -С. 157-160.

20. Nomura, K. The lanthanum – bismuth alloy system /K. Nomura,

H. Hayakawa, S. Ono //J. Less-Common Metals. -1977. -V.52. -No 2. -P. 259-269.

21. Самсонов, Г.В. Висмутиды /Г.В. Самсонов, М.Н. Абдусалямова, В.Б. Черногоренко. –Киев.: Наукова Думка, -1977. -138 с.

22. Pleasance, R.J. The solibilities of niobium, cerium and strontium in liquid bismuth / R.J. Pleasance //J. Inst. Metals. -1959/1960.-V. 38. -No 1. -P. 45-47.

23. Olcese, G.L. Sul comportamento di valenza del Ce nelle fasi intermedie con As, Sb, e Bi / G.L. Olcese //Chemical Industria. -1965. -V. 47. - № 4. -P. 437-439.

24. Heat of formation of cerium-bismuth allos / G. Borzone, A. Borsese, A. Calabretta, R. J. Ferro //Less-Common Metals. -1978. -V. 58. -No. 2. -P. 31-36.

25. Абулхаев, В.Д. Диаграмма состояния и некоторые свойства сплавов системы Pr – Bi / В.Д. Абулхаев //Неорган. Материалы. -1997. -Т. 33.- № 5. -С. 524-527.

26. Васильев, М.В. Расчет эвтектической концентрации двойных металлических систем /М.В. Васильев //Журн. физ. химии. -1970. -Т. 28. -№ 1 -С. 2170-2174.

27. Кобзенко, Г.Ф. Диаграмма состояния и свойства сплавов системы Nd –Ві /Г.Ф. Кобзенко, В.Б. Черногоренко, В.П. Федорченко //Изв. АН СССР. Неорган. материалы. -1971. -Т. 7. –С. 1438-1440.

28. Borsese, A. Heat of formation of neodymium-bismuth allos /A. Borsese,R. Capelli, S. Delfino //Termochim. Acta. -1974. -V.8. No 1. P. 393-397.

29. Абулхаев, В.Д. Диаграмма состояния системы Nd – Ві /В.Д. Абулхаев, И.Н. Ганиев //Тез. докл. по материалам научн. конф., посвященной памяти академика Нуманова И.У. –Душанбе, -1994. –С. 6.

30. Абулхаев, В.Д. Диаграмма состояния системы Nd – Bi /B.Д. Абулхаев, И.Н. Ганиев //Докл. АН РТ. -1995. -Т. XXXVIII. -№ 5, 6. –С. 32-37.

31. Абулхаев, В.Д. Диаграмма состояния и свойства сплавов системы неодим – висмут /В.Д. Абулхаев //Журнал неорганической химии. -2001.
-Т. 46. -№ 4. –С. 659-662.

32. Sadigov, F.M. The phase diagram of the Sm – Bi system /F.M. Sadigov, O.M. Alieyv, P.G. Rustamov //J. Less-Common Metals. -1985. -V. 113. -No. 2. -P. L17-L19.

33. Абдусалямова, М.Н. Некоторые свойства моновисмутидов редкоземельных металлов цериевой подгруппы /М.Н. Абдусалямова, О.И. Рахматов, Х.Ш. Шокиров //Изв. АН СССР. Металлы. -1988. -№ 1. -С. 187-189.

34. Абулхаев, В.Д. Диаграмма состояния системы Sm –Sb /B.Д. Абулхаев//Неорган. материалы. -1992. -T.28. -№1. -C. 81-86.

35. Schmidt, F.A. The yttrium-bismuth alloy system /F.A. Schmidt, O.D. McMaster, Lichtenberg R.R. //J. Less-Common Metals. -1969. -V. 18. -No. 1. -P. 215-220.

36. Heat of formation of yttrium-bismuth allos /Ferro R., Borsese A., Capelli R., Delfino S. //Termochim. Acta. -1974.-V. 8. -No 2. -P. 387-389.

37. Maksudova, T.F. The ytterbium-bismuth system /T.F. Maksudova, Rustamov P.G., Aliev O.M. //J. Less-Common Metals. -1985. -V. 109. -No. 2. -P. L19-L23.

38. Phase equilibria and thermodynamic properties of Yb-Bi system /G. Borzone, A. Saccone, N. Parodi, Ferro R. //Assoc. Fr. Calorim. et. anal. therm. (AFCAT). Marseille.: -1991. -P. 17-21.

39. Холов, Н.Ш. Сплавы системы Ln – Bi (Ln = Pr, Nd, Gd, Tb) и Gd₄Bi₃ – Ln₄Bi₃ (Ln = Pr, Nd, Tb): дис....канд. техн. наук: 02.00.04. /Холов Нурмахмад Шарифович.-Душанбе., 2009. -130 с.

40. Taylor, J.B. Pouder data for some new – europium antimonides and bismutides /J.B. Taylor, L.D. Calvert, Wang Y. //J. Appl. Crystallogr. -1979. -V.12. -№2. -P. 249-251.

41. The crystal structure of Y_5Bi_3 and its relation to the Mn_5Si_3 and the Yb_5Sb_3 type structure /V. Wang, E.J. Gabe, L.D. Calvert, J.B. Taylor //Acta Cryst. -1976. -V.-B. 32. -Pt. 5. P. 1440-1445.

42. Holtzberg, F. Rare-earth compounds with the Th₃P₄ type structure /
F. Holtzberg, S. Methfessel //J. Appl. Phys. -1966. -V.37. -№3. -P. 1433-1435.

43. Ferromagnetism in rare earth group VA and VIA compounds with Th_3P_4 structure /F. Holtzberg, T.R. McGuire, S. Methfessel J.C.F. Suits //J. Appl. Phys. -1964. -V. 35. -No 3. -P. 1033-1038.

44. Пирсон, У. Кристаллохимия и физика металлов и сплавов /У. Пирсон -М.: Мир, -1977. Т.1. -419 с.

45. Iandelli, A. Sulla struktura cristallina dei composti delle terre rare Cl. Sci con i metalloidi del V gruppo Composti 1:1 con bismuto (LaBi, CeBi, PrBi /A. Iandelli, E. Botti //Atti Accad. naz. Lincei, Rend. fis., mat. e. nat. -1937. -V. 26. -P. 233-238. 46. Iandelli, A. Sulla struktura cristallina dei composti delle terre rare Cl. Sci con i metalloidi del V gruppo /A. Iandelli, E. Botti //Accad. naz. Lincei, Rend., fis., mat. e. nat. -1937.-V. 25. -P. 638-640.

47. Iandelli, A. Sul alcuni composti intermetallic e stmimetallici del gadolinio (GdBi) /A. Iandelli //Atti Accad. naz. Lincei, Rend., Cl. Sci. fis., mat. e. nat. -1960. - V. 29. -№ 1/2. -P. 62-69.

48. Iandelli, A. Sul composti di formula MX formiati delle terre con P, As, Sb, Bi, S, Se, Te. Composti del tulio e del lutezio (TmBi, LuBi) /A. Iandelli //Atti Accad. naz. Lincei, Rend., Cl. Sci. fis., mat. e. nat. -1964. -V. 37. -№ 3/4. -P.160-164.

49. Иверонова, В.И. Струкрура соединенй редкоземельных элементов /В.И. Иверонова, В.П. Тарасова, М.М. Уманский //Вестник МГУ. Сер. физ. мат. и естеств. наук. -1951. -Вып. 5. -№ 8. -С. 37-60.

50. Bruzone, G. Composti dell Erbio con metalloidi del V e VI gruppo /G. Bruzone //Atti Accad. naz. Lincei, Rend. Cl. Sci. fis., mat. e. nat. -1961.-V. 31. -№5. -P. 260-264.

51. Bruzone, G. Proprieta strutturali e magnetiche dei cjmposti MX formati dall Ho con I metalloidi del 5° e 6° gruppo /G. Bruzone //Atti Accad. naz. Lincei, Rend. Cl. Sci. fis., mat. e. nat. -1961.-V. 30. -№ 2. -P. 208-213.

52. Журавлев, Н.Н. Рентенографическое определение структуры YBi и YSb /Н.Н. Журавлев, Е.М. Смирнова / Кристаллография. -1962. -Т.7 .-№ 5. -С. 453-454.

53. Журавлев, Н.Н. Исследование сплавов висмута и сурьмы со скандием /Н.Н. Журавлев, Е.М. Смирнова //Кристаллография. -1962. -Т. 7. -№ 2. Вып. 5. -С. 787-787.

54. Кузьмин, Р.Н. Структура соединений редкоземельных металлов с сурьмой и висмутом состава АВ /Р.Н. Кузьмин, С.В. Никитина //Кристаллография. -1963. -Т.8. -№ 3. -С. 453-454.55.

55. Ианделли, А. Кристаллическая структура и магнитная восприимчивость соединений редкоземельных металлов с P, As, Sb, Bi, S и Te типа MX /А. Ианделли //Новые исследования редкоземельных металлов. –М:, Мир, -1964. -C. 78-88.

56. Bruzonne, G. Sul comportamento di ittrio, europio e itterbio nti composti MX con i metalloidi del V e VI gruppo /G. Bruzonne, A. Ruggiero, G.I. Olcese //Atti Accad. naz. Lincei, Rend. Cl. Sci. fis., mat. e. nat. -1964.-V. 36. -№ 1. -P. 66-69.

57. Абдусалямова, М.Н. Висмутиды редкоземельных металлов / М.Н. Абдусалямова // Металлы. -1992. -№ 1.- С. 212-215.

58. Бокий, Г.Б. Кристаллохимия /Г.Б. Бокий -М.: Наука, -1971. -399 с.

59. Яценко, С.П. Редкоземельные элементы. Взаимодействие с р – металлами /С.П. Яценко, Е.Г. Федорова, -М.: Наука, -1990. -278 с.

60. Rieger, W. Antimonides with D_8 and Hf_4Sn_3Cu types /W. Rieger, E. Parthe //Acta Cryst. -1968. -V. B 24. -P. 456-458.

61. Hulliger, F. Rare-earth pnictides. Handbook on the physics and chemistry of rare-earth /F. Hulliger //Amsterdam: North-Holland Publ. Comp, -1979.

-V. 14. -Chapter 33. - P. 153-236.

62. Holtzberg, F. Ferromagnetic compounds Rare-E metals /F. Holtzberg, S.J. Methfessel //Pat. 1.038, 826. -1968 (Englend).

63. Holtzberg, F. Ferromagnetic compounds /F. Holtzberg, S.J. Methfessel //Pat. 1.037, 887. -1968 (Englend).

64. Абдусалямова, М.Н. Изучение электрофизических свойств некоторых моновисмутидов редкоземельных элементов /М.Н. Абдусалямова,

Б.М. Рудь, О.И. Рахматов //Тугоплавкие соединения редкоземельных элементов. -Душанбе.: Дониш, -1978. -С. 292-297.

65. Electrical properties of selected rare earth compounds and alloys /F.J. Ried, L.K. Matson J, F.Miller R.C.Himes //J. Electrochem. Soc, -1964. -V. III. - № 8. -P. 943-950.

66. Абдусалямова, М.Н. Исследование электрофизических свойств некоторых пниктидов РЗЭ и сопоставление их с расчетными данными/М.Н. Абдусалямова, Б.А. Ковенская //Исследования в области новых материалов. Киев.: ИПМ АН УССР, -1977. -С. 123-124. 67. Абдусаламова, М.Н., Электрофизические свойства моновисмутидов РЗЭ иттриевой подгруппы /М.Н. Абдусаламова, Б.А. Ковенская, М.Н. Абдусалямова //Тугоплавкие соединения редкоземельных элементов. -Душанбе. -Дониш, -1978. С. 288-291.

68. Абдусаламова, М.Н. Электронное строение моновисмутидов редкоземельных элементов цериевой подгруппы /М.Н. Абдусаламова, Б.А. Ковенская М.Н. Абдусалямова //Изв. АН Тадж. ССР.Отд. физ.-мат. хим. и геолого-минерал. наук. -1980. -№ 4 (78). -С. 83-85.

69. Magnetic and transport properties of Ce_4X_3 (X = Bi, Sb) / A. Ochiai, Y. Nakabayachi, Y.S. Kwon et. al //J. Magn. Magn. Mater. -1985. -V. 52. -P. 304-306.

70. Busch, G. Magnetic properties of rare earth compounds / G. Busch //J. Appl. Phys. -1967. -V.38. -№ 3. -P. 1386-1394.

71. Магнитная восприимчивость сплавов системы неодим-висмут /М.И. Лесная, В.Б.Черногоренко, Г.Ф. Кобзенко, Г.В. Доротюк. Получение и исследование свойств редкоземельных металлов. -Киев.: ИПМ, -1975. -С. 1000-1003.

72. Ковенская, Б.А., Теплофизические свойства моновисмутидов РЗМ иттриевой подгруппы /Б.А. Ковенская, М.Н. Абдусалямова, М.Н. Абдусаламова // Теплофиз. Высок. Температур. -1977. -Т. 15.- С. 1000-1003.

73. Абдусалямова, М.Н. Термическое расширение моновисмутидов редкоземельных элементов /М.Н. Абдусалямова, О.И. Рахматов //Изв. АН СССР. Неорган. материалы. -1977. -Т. 13.- № 10. -С. 1900-1901.

74. Самсонов, Г.В. /Г.В. Самсонов Тугоплавкие соединения р.з.м. с неметаллами. - М.: Металлургия, -1964. -244 с.

75. Heat of formation of La₄Bi₃ and LaBi compounds /A. Borsese, R. Capelli, S. Delfino, R. Ferro //Termochim. Acta. -1974.-V. 9. -No 2. -P. 313-317.

76. Heat of formation of praseodymium-bismuth allos /A.Borsese, R. Ferro, //R. Capelli, S. Delfino // Termochim. Acta. -1975. -V. 11. -No 2. -P. 205-210.

77. Ямщиков, Л.Ф. Темодинамические свойства и термическая устойчивость соединений церия с легкоплавкими металлами /Л.Ф. Ямщиков, В.А., Лебедев, В.И. Кобер. //Тугоплавкие соединения редкоземельных элементов. Душанбе.: Дониш, -1978. -С. 373-377.

78. Термодинамика образования богатых легкоплавким компонентом сплавов диспрозия с висмутом и свинцом /Л.Ф. Ямщиков, А.В. Волынчук, В.А. Курочкин и др. //Изв. АН СССР. Металлы. -1989. -№ 3. -С. 204-206.

79. Соединения редкоземельных элементов. Гидриды, бориды, карбиды, фосфиды, пниктиды, халькогениды, псевдохалькогениды /М.Е. Кост, А.Л. Шилов, В.И. Михеева и др. М.: Наука, -1983. -273 с.

80. Виксман, Г.Ш. Термодинамические характеристики моновисмутидов лантана, празеодима, неодима и гадолиния /Г.Ш. Виксман, С.П. Гордиенко //Тезисы докл. IV Всесоюзн. конф. по физике и химии редкоземельных полупроводников .-Новосибирск, -1987. -С. 123.

81. Гордиенко, С.П. Термодинамические свойства моновисмутидов лантана, празеодима, неодима и гадолиния /С.П. Гордиенко, Г.Ш., Виксман //Тезисы докл. III Всесоюзн. конф. по термодинамике и материаловедению полупроводников. -М., -1986. -Т. 2. -С. 116-217.

82. Виксман, Г.Ш. Термодинамические характеристики моновисмутидов лантана, празеодима, неодима и гадолиния /Г.Ш. Виксман, С.П. Гордиенко // Порошковая металлургия. -1987. -№ 7. -С. 63-65.

83. Кинетика окисления моновисмутидов РЗЭ цериевой подгруппы
/М.Н. Абдусалямова, С.И. Малахова, Л.М. Шалухина, О.И. Рахматов //Журнал физической химии. -1980. -Т. 54. -С. 1191-1194.

84. Абусалямова, М.Н. Некоторые химические свойства моноантимонидов и моновисмутидов редкоземельных элементов (РЗЭ) /М.Н. Абусалямова, В.П. Гармашева, О.И. Рахматов //Изв. АН Тадж. ССР. отд. физ.-мат. химич. и геологич. наук.-1980. -№ 2 . -С. 96-99.

85. Абулхаев, В.Д. Синтез и физико-химические свойства сплавов и соединений редкоземельных элементов с сурьмой и висмутом: дис...д-ра хим. наук: 02.00.01/ Абулхаев Владимир Джалолович - Душанбе., -1996. -355 с.

86. Высокотемпературный дифференциальный термоанализатор ВДТА

/Ю.А. Кочержинский, Н.Н. Безштанько, В.И. Василенко и др. //Изв АН СССР. сер. хим. наук. 1974. Вып. 4. № 9. С. 32-35.

87. Энциклопедия неорганических материалов. -Киев.: УСЭ, -1977. -Т.1. -840 с.

88. Физический энциклопедический словарь. -М.: СЭ, -1963. -624 с.

89. Аносов, В.Я. Основы физико-химического анализа /В.Я. Аносов, М.Н. Озерова, Ю.Я. Фиалков. -М.: Наука, -1976. -490 с.

90. Берг, Л.Г. Введение в термографию /Л.Г. Берг. -М.: Наука, -1969. -395 с.

91. Недома, И. Расшифровка рентгенограмм порошков /И. Недома. -М.: Металлургия, -1975. -423 с.

92. Миркин, Л.И. Справочник по рентгеноструктурному анализу поликристаллов /Л.И. Миркин. -М.: Физматгиз, -1961. -863 с.

93. Глазов, В.М. Микротвердость металлов и полупроводников /В.М. Глазов, В.Н. Вигдорович. -М.: Металлургия, -1969. -248 с.

94. Чечерников В.И. Установка с использованием магнитных весов

/ В.И. Чечерников //Магнитные измерения. -М.: МГУ, -1963. -С. 92-94.

95. Савицкий, Е.М., Металловедение редкоземельных металлов. /Е.М., Савицкий, В.Ф. Терехова. -М.: Наука, -1975. -270 с.

96. Ахметов, Н.С. Общая и неорганическая химия /Н.С. Ахметов. -М.: Высшая школа, -1981. -679 с.

97. Тейлор, К. Физика редкоземельных соединений /К. Тейлор, М. Дарби -М.: Мир, -1974. -374 с.

98. Белов, К.П. Редкоземельные магнетики и их применение /К.П. Белов. -М.: Наука, -1980. -239 с.

99. Селвуд, П. Магнетохимия /П. Селвуд -М.: Иностран. литерат. -1958. -457 с.

100. Вонсовский, С.В. Магнетизм. /С.В. Вонсовский.- М.: Наука, -1984. -205 с.

101. Редкоземельные ферро- и антиферромагнетики /К.П. Белов, М.А.

Белянчикова, Р.З. Левитин, С.А. Никитин. -М.: Наука, -1965. -319 с.

102. Азизов, Ю.С., Диаграмма состояния системы Gd₅Sb₃ – Ho₅Sb₃ /Ю.С.Азизов, В.Д. Абулхаев, И.Н. Ганиев //Докл. АН РТ. -1998. -Т. 41. -№ 1-2. -С. 48-51.

103. Азизов, Ю.С., Диаграмма состояния и некоторые свойства сплавов системы Gd₅Sb₃ – Tb₅Sb₃/Ю.С. Азизов, В.Д.Абулхаев, И.Н. Ганиев//Докл. АН РТ. -1998. -T. 41.- № 11-22. -C. 77-80.

104. Азизов, Ю.С. Твердые растворы на основе антимонидов некоторых редкоземельных элементов: //дисс. ... канд. тех. наук : 02.00.04/ Азизов Юсуф Самиевич –Душанбе., -1999. -134 с.

105. Диаграмма состояния и магнитные свойства сплавов системы Nd₄Bi₃-Gd₄Bi₃/ Н.Ш. Холов, В.Д. Абулхаев, И.Н. Ганиев, Х.Х. Назаров //Докл. АН РТ. -2008. -Т. 51. -№ 6. - С. 436-441.

106. Диаграмма состояния и магнитные свойства твердых растворов системы Gd₄Bi₃ - Tb₄Bi₃/H.Ш. Холов, В.Д. Абулхаев, И.Н.Ганиев, Х.Х. Назаров //Докл. АН РТ. -2008. -T. 51. -№ 7. - С. 526-531.

107. Синтез и магнитные свойства сплавов системы Gd –Bi /H.Ш. Холов В.Д. Абулхаев И.Н. Ганиев, Х.Х. Назаров //Докл. АН РТ. 2008. Т. 51. -№ 8. С. 610-614.

108. Синтез, электрофизические и магнитные свойства твердых растворов системы Gd₄Bi₃ – Pr₄Bi₃/H.Ш. Холов, В.Д.Абулхаев, И.Н. Ганиев, Х.Х. Назаров //Вестник технического университета им. академика М.С. Осими. -2008. -№ 3. -С. 25-29.

109. Диаграмма состояния и некоторые свойства сплавов системы Gd₄Bi₃-Dy₄Sb₃/M.A. Балаев, В.Д. Абулхаев, Ю.С. Азизов, И.Н. Ганиев, Н.Ш. Холов//Изв. АН РТ. Отд. физ.-мат., химич., геологич. и технич. наук. -2010. -№2 (139). -С. 50-55.

110. Синтез и магнитные свойства твердых растворов системы Gd₄Bi₃ - Gd₄Sb₃/ М.А.Балаев, В.Д. Абулхаев, Ю.С. Азизов, И.Н.Ганиев, Н.Ш. Холов //Изв. АН РТ. Отд. физ.-мат., химич., геологич. и технич. наук. -2010. -№3

(140). -C. 70-75.

111. Балаев, М.А., Диаграмма состояния и магнитные свойства сплавов системы Gd₄Bi₃-Yb₄Sb₃/M.А.Балаев, В.Д. Абулхаев, И.Н. Ганиев//Докл. АН РТ. -2010. -Т. 53. -№ 5. -С. 389-393.

112. Балаев, М.А., Диаграмма состояния и магнитные свойства сплавов системы Gd₄Bi₃-Tb₄Sb₃/М.А.Балаев, В.Д. Абулхаев, И.Н.Ганиев //Докл. АН Республики Таджикистан. -2010. -Т. 53. -№ 8. -С. 622-626.

113. Диаграммы состояния и магнитные свойства сплавов системы
Gd₄Sb₃ – Yb₄Bi₃. /С.О.Убайдов, В.Д. Абулхаев, Ю.С. Азизов, М.А. Балаев,
И.Н. Ганиев. // Докл. АН РТ. - 2011. - Т. 54. -№ 5. - С. 376-379.

114. Электрофизические свойства висмутидов Ln₅Bi₃ (Ln=Pr, Nd) и Ln₄Bi₃ (Ln=Pr, Nd, Tb, Yb). /С.О.Убайдов, В.Д. Абулхаев, Ю.С. Азизов, М.А. Балаев, И.Н. Ганиев. //Изв. АН РТ, Отд. физ.-мат., химич. геологич. и технич. наук. - 2011. - № 1 (142). - С. 55-59.

115. Магнетохимические свойства сплавов системы Gd₄Sb₃-Tb₄Bi₃.
/С.О.Убайдов, В.Д. Абулхаев, Ю.С. Азизов, М.А. Балаев, И.Н. Ганиев.
// Докл. АН РТ. -2011. - Т. 54. - № 7. - С. 555-559.

приложения

РЗЭ	Марка	Примеси							
		других	Cu	Fe	Si	N_2	С	H_2	F_2
		РЗЭ							
Gd	ГдМД-2	0.06	0.01	0.01	0.01	0.005	0.01	0.001	0.01
Tb	ТбМД-2	0.05	0.01	0.01	0.01	0.005	0.01	0.001	0.01
Dy	ДиМД-2	0.1	0.01	0.01	0.01	0.005	0.01	0.001	0.01
Но	ГоМД-2	0.2	0.03	0.01	0.01	0.005	0.01	0.001	0.01
Er	ЭрМД-2	0.1	0.03	0.01	0.01	0.005	0.01	0.001	-
Tm	ТуМД-2	0.1	0.01	0.01	0.01	0.005	0.01	-	-
Lu	ЛюМД-2	0.1	0.03	0.01	0.01	0.005	0.01	0.001	-

Таблица 1- Химический состав РЗЭ (ТУ 48-1303-173-76), в мас. %

Таблица 2- Химический состав висмута марки ОСЧ 11-4 (ТУ 05-159-69)

N⁰	Наименование	Содержание	\mathbb{N}_{2}	Наименова-	Содержание
п/п	примесей	в мас. %	п/п	ние приме-	в мас. %
				сей	
1.	Al	1×10^{-5}	10.	Pb	3×10^{-5}
2.	Со	5× 10 ⁻⁶	11.	Ag	2×10^{-6}
3.	Fe	3× 10 ⁻⁵	12.	Zn	5×10^{-5}
4.	Cd	2× 10 ⁻⁷	13.	In	2×10^{-5}
5.	Mg	5× 10 ⁻⁶	14.	Sb	1 × 10 ⁻⁶
6.	Mn	7× 10 ⁻⁷	15.	Cr	5×10^{-6}
7.	Cu	5× 10 ⁻⁶	16.	Au	2× 10 ⁻⁶
8.	Ni	1×10^{-5}	17.	Hg	2× 10 ⁻⁵
9.	Sn	1×10^{-5}	18.	As	3×10^{-5}

N⁰	h k 1	d _{hkl} , нм	θ,°	I/I ₀ , %
п/п				
1	2	3	4	5
1.	111	0.5.535	8.28	1
2.	112	0.4336	10.24	1
3.	200	0.4113	10.80	10
4.	121	0.3902	11.38	60
5.	210	0.3776	11.78	1
б.	013	0.3709	12.00	1
7.	103	0.3617	12.31	1
8.	113	0.3381	13.18	45
9.	031	0.3072	14.53	15
10.	004	0.3020	14.29	80
11.	123	0.2881	15.52	100
12.	104	0.2835	15.78	45
13.	222	0.2767	16.18	30
14.	213	0.2754	16.25	25
15.	114	0.2717	16.48	1
16.	301	0.2674	16.75	5
17.	311	0.2574	17.43	8
18.	024	0.2552	17.58	5
19.	223	0.2463	18.24	12
20.	124	0.2436	18.45	1
21.	015	0.2408	18.67	10
22.	214	0.2358	19.08	12
23.	115	0.2252	20.01	1
24.	322	0.2211	20.32	55
25.	224	0.2168	20.82	10

Таблица 3 - Результаты расчета дифрактограммы порошка Gd_5Bi_3 a = 0.8230, b = 0.9626, c = 1.2110 нм. Излучение CuK_{α} .

1	2	3	4	5
26.	134	0.2115	21.37	6
27.	125	0.2084	21.71	12
28.	400	0.2056	22.02	1
29.	215	0.2035	22.26	30
30.	410	0.2010	22.55	5
31.	411	0.1983	22.87	10
32.	035	0.1923	23.63	8
33.	225	0.1908	23.83	8
34.	421	0.1865	24.41	2
35.	026	0.1854	24.57	5
36.	403	0.1831	24.40	5
37.	206	0.1808	25.23	16
38.	315	0.1780	25.66	4
39.	423	0.1709	26.82	12
40.	226	0.1690	27.13	35
41.	432	0.1660	27.93	1
42.	502	0.1587	29.14	30
43.	405	0.1566	29.48	2
44.	326	0.1536	30.12	8
45.	037	0.1516	30.56	4
46.	522	0.1506	30.79	25
47.	425	0.1487	31.23	18
48.	246	0.1426	32.73	12
49.	514	0.1404	33.30	3
50.	600	0.1371	34.22	8

N⁰	h k l	d _{hkl} , нм	θ,°	I/I ₀ , %
П/П				
1	2	3	4	5
1.	111	0.5.487	8.08	l
2.	112	0.4262	10.42	1
3.	200	0.4022	11.05	12
4.	121	0.3932	11.34	70
5.	210	0.3719	11.96	1
6.	013	0.3626	12.27	1
7.	103	0.3513	12.68	1
8.	113	0.3306	13.50	35
9.	031	0.3137	14.22	12
10.	004	0.230	15.25	65
11.	123	0.2852	15.68	100
12.	104	0.2752	16.29	40
13.	222	0.2743	16.32	20
14.	213	0.2693	16.63	30
15.	114	0.2649	16.89	1
16.	301	0.2614	17.15	8
17.	311	0.2525	17.78	10
18.	024	0.2512	17.87	3
19.	223	0.2430	18.50	16
20.	124	0.2398	18.75	1
21.	015	0.2343	19.20	8
22.	214	0.2301	19.58	10
23.	115	0.2192	20.59	1
24.	322	0.2182	20.69	45
25.	224	0.2130	21.22	12

Таблица 4 - Результаты расчета дифрактограммы порошка Lu_5Bi_3 a = 0.8046, b = 0.9768, c = 1.1718 нм. Излучение CuK_{α}

1	2	3	4	5
26.	134	0.2102	21.51	5
27.	125	0.2043	22.16	8
28.	400	0.2011	22.54	1
29.	215	0.1982	22.88	25
30.	410	0.1970	23.04	5
31.	411	0.1942	23.38	16
32.	035	0.1902	23.90	12
33.	225	0.1870	24.34	10
34.	421	0.1836	24.82	2
35.	026	0.1813	25.20	5
36.	403	0.1788	25.58	4
37.	206	0.1756	26.04	12
38.	315	0.1736	26.37	8
39.	423	0.1679	27.33	10
40.	226	0.1653	27.79	20
41.	432	0.1642	28.00	1
42.	502	0.1551	29.79	35
43.	405	0.1526	30.34	2
44.	326	0.1502	30.88	10
45.	037	0.1488	31.19	6
46.	522	0.1478	31.43	18
47.	425	0.1456	31.96	25
48.	246	0.1426	32.73	16
49.	514	0.1395	33.54	8
50.	600	0.1340	35.12	12
N⁰	h k l	d _{hkl} , нм	$\theta,^{o}$	I/I ₀ , %
-----	-------	-----------------------	---------------	----------------------
п/п				
1	2	3	4	5
1.	111	0.5548	7.98	1
2.	112	0.4333	10.25	1
3.	200	0.4124	10.77	8
4.	121	0.3920	11.34	75
5.	210	0.3789	11.74	1
6.	013	0.3697	12.04	1
7.	103	0.3604	12.35	1
8.	113	0.3373	13.21	20
9.	031	0.3089	14.45	10
10.	004	0.3005	14.86	70
11.	123	0.2881	15.48	100
12.	104	0.2823	15.85	32
13.	222	0.2774	16.13	16
14.	213	0.2753	16.26	25
15.	114	0.2708	16.54	1
16.	301	0.2680	16.71	4
17.	311	0.2581	17.38	8
18.	024	0.2546	17.65	5
19.	223	0.2465	18.22	12
20.	124	0.2433	18.47	1
21.	015	0.2332	19.30	16
22.	214	0.2286	19.71	8
23.	115	0.2244	20.09	2
24.	322	0.2217	20.35	35
25.	224	0.2.166	20.85	14

Таблица 5-Результаты расчета дифрактограммы порошка $Gd_{3.5}Tb_{1.5}Bi_3$ a = 0.8250, b =0.9576, c = 1.2024 нм. Излучение CuK_{α} .

1	2	3	4	5
26.	134	0.2.116	21.36	2
27.	125	0.2080	21.75	10
28.	400	0.2062	21.95	1
29.	215	0.2030	22.30	30
30.	410	0.2016	22.48	8
31.	411	0.1988	22.82	20
32.	035	0.1921	23.65	15
33.	225	0.1906	23.86	8
34.	421	0.1871	24.33	2
35.	026	0.1848	24.65	6
36.	403	0.1833	24.87	16
37.	206	0.1802	25.32	10
38.	315	0.1778	25.69	12
39.	423	0.1712	26.76	8
40.	226	0.1686	27.20	15
41.	432	0.1665	27.58	1
42.	502	0.1591	28.98	40
43.	405	0.1565	29.50	2
44.	326	0.1534	30.17	12
45.	037	0.1512	30.65	8
46.	522	0.1510	30.70	20
47.	425	0.1488	31.20	30
48.	246	0.1440	32.37	12
49.	514	0.1430	32.62	10
50.	600	0.1375	34.09	15

N⁰	h k l	d _{hkl} , нм	θ,°	I/I ₀ , %
п/п				
1	2	3	4	5
1.	111	0.5500	8.00	<1
2.	112	0.4320	10.28	<1
3.	200	0.4068	10.92	6
4.	121	0.3877	11.47	80
5.	210	0.3738	11.90	<1
6.	013	0.3716	11.97	<1
7.	103	0.3620	12.29	<1
8.	113	0.3586	12.41	16
9.	031	0.3054	14.62	8
10.	004	0.3031	14.74	65
11.	123	0.2980	14.99	100
12.	104	0.2840	15.75	25
13.	222	0.2749	16.28	14
14.	213	0.2744	16.34	20
15.	114	0.2720	16.46	<1
16.	301	0.2647	16.93	2
17.	311	0.2550	17.60	4
18	223	0.2452	18.32	6
19.	124	0.2435	18.45	<1
20.	015	0.2350	19.15	10
21.	115	0.2256	19.61	2
22.	322	0.2193	20.58	30
23.	224	0.2162	20.89	12
24.	134	0.2151	20.99	2
25.	125	0.2124	21.28	8

Таблица 6-Результаты расчета дифрактограммы порошка $GdDy_4Bi_3$ a = 0.81348, b = 0.9452, c = 1.2124 нм. Излучение CuK_{α} .

1	2	3	4	5
26.	400	0.2034	22.27	<1
27.	410	0.1988	22.81	6
28.	411	0.1962	23.6	15
29.	035	0.1922	23.64	10
30.	225	0.1906	23.85	6
31.	421	0.1847	24.66	2
32.	403	0.1817	25.10	12
33.	206	0.1809	25.21	8
34.	315	0.1775	25.43	10
35.	423	0.1696	27.03	8
36.	226	0.1690	27.13	12
37.	432	0.1645	27.93	<1
38.	502	0.1571	29.40	35
39.	405	0.1558	29.65	2
40.	326	0.1533	30.19	10
41.	037	0.1518	30.52	6
42.	425	0.1480	30.98	25
43.	246	0.1437	32.44	10
44.	514	0.1417	32.96	8
45.	600	0.1356	34.64	12

Таблица 7 - Результаты расчета дифрактограммы порошка $Gd_{1.5}Ho_{3.5}Bi_3$ a = 0.8148, b = 0.9794, c = 1.1987 нм. Излучение CuK_{α} .

No	h k l	d _{hkl} , нм	$\theta,^{o}$	I/I ₀ , %
п/п				
1	2	3	4	5
1.	111	0.5557	6.98	<1
2.	112	0.4332	10.25	<1

3.	200	0.4076	10.90	8
1	2	3	4	5
4.	121	0.3968	11.20	70
5.	210	0.3765	11.86	<1
6.	013	0.3698	12.03	<1
7.	103	0.3587	12.41	<1
8.	113	0.3510	12.68	25
9.	031	0.3157	14.13	10
10.	004	0.2995	14.91	60
11.	123	0.2889	15.47	100
12.	104	0.2812	15.91	30
13.	222	0.2778	16.11	12
14.	213	0.2727	16.42	30
15.	114	0.2703	16.57	<1
16.	301	0.2650	16.91	4
17.	311	0.2558	17.38	6
18.	024	0.2557	17.54	2
19.	223	0.2466	18.21	8
20.	124	0.2439	18.42	<1
21.	015	0.2328	19.33	16
22.	115	0.2238	20.14	12
23.	322	0.2210	20.42	25
24.	224	0.2166	20.85	10
25.	134	0.2132	21.19	5
26.	400	0.2038	22.22	<1
27.	215	0.2021	22.42	20
28.	410	0.1995	22.72	8
29.	411	0.1968	23.06	25
30.	035	0.1933	23.50	15

1	2	3	4	5
31.	225	0.1904	23.88	5
32.	421	0.1860	24.48	2
33.	026	0.1849	24.56	6
34.	403	0.1815	25.13	16
35.	206	0.1793	25.46	12
36.	315	0.1768	25.85	10
37.	423	0.1702	26.93	4
38.	226	0.1684	27.24	8
39.	432	0.1662	27.63	<1
40.	502	0.1573	29.34	45
41.	405	0.1552	29.78	2
42.	326	0.1534	30.10	15
43.	037	0.1516	30.56	5
44.	522	0.1498	30.97	20
45.	425	0.1480	31.40	35
46.	246	0.1448	32.16	12
47.	514	0.1417	32.95	8
48.	600	0.1359	34.53	20

Таблица 8 - Результаты расчета дифрактограммы порошка $Gd_2Er_3Bi_3$ a = 0.8134, b = 0.9744, c = 1.1864 нм. Излучение CuK_{α} .

No	h k l	d _{hkl} , нм	$\theta,^{o}$	I/I ₀ , %
п/п				
1	2	3	4	5
1.	111	0.553	8.05	<1
2.	112	0.430	10.32	<1
3.	200	0.407	10.92	10
4.	121	0.3945	11.27	80

1	2	3	4	5
5.	210	0.3758	11.84	<1
6.	013	0.3664	12.14	<1
7.	103	0.3557	12.47	<1
8.	113	0.3341	13.37	30
9.	031	0.3134	14.24	10
10.	004	0.2965	15.07	75
11.	123	0.2873	15.54	100
12.	104	0.2786	16.06	25
13.	222	0.2765	16.19	14
14.	213	0.2724	16.44	35
15.	114	0.2679	16.72	<1
16.	301	0.2646	16.94	4
17.	311	0.2554	17.58	8
18.	024	0.2533	17.77	5
19.	223	0.2452	18.32	10
20.	015	0.2308	19.51	12
21.	115	0.2218	20.33	4
22.	322	0.2202	20.49	25
23.	224	0.2151	20.98	8
24.	134	0.2154	20.98	2
25.	125	0.2099	21.54	10
26.	400	0.2036	22.25	<1
27.	215	0.2006	22.60	40
28.	410	0.1993	22.75	15
29.	411	0.1966	23.08	30
30.	035	0.1916	23.72	14
31.	225	0.1889	24.08	8
32.	421	0.1856	24.54	4

1	2	3	4	5
33.	026	0.1832	24.88	8
34.	403	0.1810	25.20	10
35.	206	0.1778	25.68	14
36.	315	0.1766	25.88	16
37.	423	0.1697	27.01	8
38.	226	0.1670	27.49	12
39.	432	0.1657	27.72	<1
40.	502	0.1571	29.40	30
41.	405	0.1545	29.91	6
42.	326	0.1518	30.52	16
43.	037	0.1502	30.88	5
44.	522	0.1495	31.05	15
45.	425	0.1473	31.55	25
46.	246	0.1436	32.47	20
47.	514	0.1413	33.06	8
48	600	0.1357	34.62	25

Таблица 9 - Результаты расчета дифрактограммы порошка $Gd_{2.5}Tm_{2.5}Bi_3$ a = 8.158, b = 9.438, c = 12.024 нм. Излучение CuK_{α} .

N⁰	h k 1	d _{hkl} , нм	θ,°	I/I ₀ , %
п/п				
1	2	3	4	5
1.	111	0.5515	8.05	<1
2.	112	0.4306	10.30	<1
3.	200	0.4080	10.89	12
4.	121	0.3869	11.49	70
5.	210	0.3745	11.88	<1
6.	013	0.3688	12.07	<1

1	2	3	4	5
7.	103	0.3596	12.38	<1
8.	113	0.3361	13.26	25
9.	031	0.3045	14.66	12
10.	004	0.3005	14.86	70
11.	123	0.2861	15.64	100
12.	104	0.2820	15.86	40
13.	222	0.2746	16.30	12
14.	213	0.2736	16.35	20
15.	114	0.2702	16.54	<1
16.	301	0.2653	16.89	6
17.	311	0.2554	17.57	8
18.	024	0.2535	17.70	4
19.	223	0.2445	18.38	14
20.	124	0.2421	18.56	<1
21.	015	0.2329	19.28	20
22.	115	0.2240	20.37	4
23.	322	0.2194	20.57	45
24.	224	0.2153	20.98	12
25.	134	0.2100	21.53	4
26.	125	0.2072	21.84	16
27.	400	0.2040	22.20	<1
28.	215	0.2023	22.39	25
29.	410	0.2011	22.54	8
30.	411	0.1967	23.07	40
31.	035	0.1910	23.80	10
32.	225	0.1896	23.98	8
33.	421	0.1850	24.62	2
34.	026	0.1844	24.71	12

1	2	3	4	5
35.	403	0.1818	25.08	20
36.	206	0.1798	25.38	18
37.	315	0.1769	25.83	12
38.	423	0.1696	27.03	8
39.	226	0.1680	27.31	12
40.	432	0.1646	27.92	<1
41.	502	0.1575	29.30	45
42.	405	0.1555	29.71	2
43.	326	0.1526	30.34	20
44.	037	0.1507	30.76	8
45.	522	0.1493	31.08	35
46.	425	0.1477	31.46	20
47.	246	0.1430	32.63	12
48.	514	0.1417	32.95	10
49.	600	0.1360	34.52	30

Таблица 10 - Результаты расчета дифрактограммы порошка $Gd_3Lu_2Bi_3$ a = 8.152, b = 9.676, c = 12.288 нм. Излучение CuK_{α} .

N⁰	h k l	d _{hkl} , нм	θ,°	I/I ₀ , %
п/п				
1	2	3	4	5
1.	111	0.5547	7.99	<1
2.	112	0.4369	10.16	<1
3.	200	0.4075	10.97	10
4.	121	0.3924	11.33	60
5.	210	0.3789	11.74	<1
6.	013	0.3766	11.81	<1
7.	103	0.3658	12.17	<1

1	2	3	4	5
8.	113	0.3419	13.03	30
9.	031	0.3102	14.39	12
10.	004	0.3070	14.54	85
11.	123	0.2911	15.35	100
12.	104	0.2872	15.57	30
13.	222	0.2773	16.40	12
14.	213	0.2766	16.18	15
15.	114	0.2752	16.27	<1
16.	301	0.2652	16.89	8
17.	311	0.2557	17.54	10
18.	223	0.2475	18.15	12
19.	124	0.2465	18.22	<1
20.	015	0.2379	18.90	20
21.	214	0.2376	18.93	8
22.	115	0.2280	19.77	2
23.	322	0.2207	20.44	40
24.	224	0.2184	20.67	16
25.	134	0.2139	21.12	2
26.	125	0.2112	21.31	15
27.	400	0.2037	22.23	<1
28.	410	0.1993	22.75	8
29.	411	0.1967	23.07	35
30.	035	0.1949	23.29	8
31.	225	0.1927	23.58	5
32.	421	0.1854	24.57	2
33.	403	0.1824	24.50	11
34.	315	0.1790	25.50	12
35.	432	0.1655	27.76	<1

1	2	3	4	5
-				
36.	502	0.1575	29.30	30
37.	405	0.1565	29.51	3
38.	326	0.1547	29.88	12
39.	037	0.1538	30.08	16
40.	522	0.1497	30.90	30
41.	425	0.1490	31.15	23
42.	246	0.1455	31.98	18
43.	514	0.1423	32.79	4
44.	600	0.1358	34.58	14

«Утверждаю» Главный инженер 40 "Сомон-Тачхизот" ОДИНАЕВ Э.Ш. колбря 2016 г. DBe .

АКТ ИСПЫТАНИЙ

Настоящим актов удостоверяется:

Проведено измерение магнитных свойств твердых растворов

Gd_{5-x}Tb_xBi₃ и Gd_{5-x}Dy_xBi₃, x=0.5-4.5, полученных в Институте химии им. В.И. Никитина Академии наук Республики Таджикистан.

Результаты измерений (см. табл.) показали, что магнитные свойства указанных твердых растворов совпадают с данными, полученными в Институте химии им. В.И.Никитина Академии наук Республики Таджикистан. Подтверждено, что указанные твердые растворы являются парамагнитными и им свойственны относительно высокие значения парамагнитных температур Кюри.

Твердые растворы $Gd_{5-x}Tb_xBi_3$ и $Gd_{5-x}Dy_xBi_{3,x}=0.5-4.5$, являются перспективными магнитными материалами для практического использования их в области криогенных температур.

Твердые	По данным иси водимых в ЗА Тачхизот"	ытаний, про- О "Сомон-	По данным Инст	итута химии
растворы	Молярная магнитная восприиим- чивость, x10 ⁻⁶	Парамагнит- ная темпера- тура Кюри, К	Молярная маг- нитная воспри- иимчивость. x10 ⁻⁶	Парамагнит- ная темпера- тура Кюри, к
1	2	3	4	5
$Gd_{4.5}Tb_{0.5}Bi_3$	225560	264	225555.5	262
Gd ₄ TbBi ₃	127418	230	127424.2	232
$Gd_{3.5}Tb_{1.5}Bi_3$	108698	222	108695.6	220
Gd ₃ Tb ₂ Bi ₃	95230	198	95238.2	204
$Gd_{2.5}Tb_{2.5}Bi_3$	81312	193	81300.0	192
Gd ₂ Tb ₃ Bi ₃	68485	180 ~	68493.2	184
Gd _{1.5} Tb _{3.5} Bi ₃	63298	176	63291.4	172
GdTb ₄ Bi ₃	59528	164	59523.8	162
$Gd_{0.5}Tb_{4.5}Bi_3$	52915	156	52910.3	154
$Gd_{4.5}Dy_{0.5}Bi_3$	92810	210	92801.4	208

Gd ₄ DyBi ₃	73332	174	73336.2	178
Gd _{3.5} Dy _{1.5} Bi ₃	65795	167	65789.4	165
Gd ₃ Dy ₂ Bi ₃	56172	142	56179.9	148
Gd _{2.5} Dy _{2.5} Bi ₃	51030	146	51020.4	138
Gd ₂ Dy ₃ Bi ₃	45464	128	45454.5	126
Gd _{1.5} Dy _{3.5} Bi ₃	40990	112	40983.6	108
GdDy ₄ Bi ₃	37868	93	37878.7	95
Gd _{0.5} Dy _{4.5} Bi ₃	35218	. 88	35211.2	85

Настоящий акт составили:

Доктор химических наук, профессор

Зам. директор

Главный механик

Начальник ПТО

B Achon В.Д.Абулхаев Lau F - А.Х.Раджабов

И.А. Гаюров А.Ш. Хафизов

«Утверждаю» Директор филиала НИТУ в г. Душанбе «МИС Каримов М.Е .11 2016

Акт внедрения

Настоящим актом подтверждается, что материал по методике синтеза твердых растворов системы $Gd_4Sb_3 - Ln_4Sb_3$ (Ln = Pr, Nd, Tb, Dy, Yb) $uGd_5Bi_3 - Ln_5Bi_3$ (Gd, Tb, Dy, Ho, Er, Tm, Lu) используетсяв учебном процесск при проведении практических занятий по синтезу интерметаллических со-единений.

Результаты по исследованию магнитных свойств твердых растворов, приведенных систем, указывают на возможность их практического использования при низких температурах, например, при температуре жидкого азота.

Зав. кафедрой металлургии

7 Нарзиев Б.Ш.

	5	-	м.
	Республи	ка Таджикистан	
	Государственно	е патентное ведомст	во
	МАЛЫ	Й ПАТЕНТ	
	№ TJ 67	1	
	119 1120	Thereuno	
-	па изос	ретение	
Твердые ра	створы на основе	<i>з висмутида гадолини</i>	ия и висмутида терби
Патентообладатель	Абдулхаев В.Дж	к., Рахимов Х.А., Наз	аров Х.Х.
Страна Республи	ка Таджикистан		
Автор (ы) Абдулд	хаев В.Дж., Рахи	мов Х.А., Назаров Х	.X.
		, I	
Приоритет изобретения	20.06.2014		
Дата подачи заявки	20.06.2014		•
Заявка № 140089	8		
110005	-		×
D			а — 13 — а -
зарегистрировано в гост изобретений Республики	ударственном реестре Паджикистан	18 февраля 201;	5
		······································	
Малый	20 2014	20 20	NAM HATENTY
патент действителен с	20 июня 2014	г. по 20 июня 20	<u>J24 r. source and the source and th</u>
			ФЕХРИСТХОН ДАВЛАТИИ
			объектхон В моликияти
			CAHOATH
		3	NIM * HOTOL

РЕСПУБЛИКА ТАЛЖИКИСТАН	
	r.
патентное ведомство	
МАЛЫЙ ПАТЕНТ	
No TEI 788	
572 15 700	
на изобретение	
ТВЕРДЫЕ РАСТВОРЫ НА ОСНОВЕ ВИСМУТИДО	В Gd5Bi3 И Ho5Bi3
Патентообладатель Абдулхаев В.Дж., Рахимов Х.А., Назарон	в Х.Х.
Страна Республика Таджикистан	
Автор (ы) Абдулхаев В.Дж., Рахимов Х.А., Назаров Х.Х.	
Приоритет изобретения 04.05.2016	
Дата подачи заявки 04.05.2016	
2	
Заявка № 1601036	
Варегистрировано в Государственном реестре	
зооретении Респуолики Таджикистан 20 сентяоря 2016	and the second se
Малый изати найотритован с 4 мая 2016 — с 4 мая 2026	WOUTHIN TIATEHTY HTTP:
	PAËCATU PAËCATU
	ДАВЛАТИ ВА НАШРИЕТ
	AUGUNAL TO AND A MACHINE REAL
•	A A
	DAL

	РЕСПУБЛИ	КА ТАД	ЦЖИКИСТАН	I	
	ПАТЕНТІ	HOE BE	ДОМСТВО		
		с. 1			
	МАЛ	ЫЙ ПА	TEHT		
	№ TJ 85	4			
	на из	обретен	ие		
Твёр	удый раствор на о	снове ви	смутидов Gd	Візи Ду5Віз	
E.			•		
*					
Патентообладатель	Абулхаев В.Дж.,	Рахимо	в Х.А., Назарс	в Х.Х.	
		5			
Страна Республи	ика Таджикистан				
Автор (ы) Абулха	аев В.Дж., Рахим	ов Х.А.,	Назарсв Х.Х.		
	00 03 2017				
Приоритет изобретени	ия 09.05.2017				
Пата полани радрии	09 03 2017				
дата подачи заявки	09.03.2017				
Заявка № 170109	8				
anerucrnuronouo - Co	ANTIANOTRALINA SACATA	2	og6ng 2017		
изобретений Республи	ки Таджикистан	∠ H	ояоря 2017		
Малый			**	and the second	
патент действителен	с 9 марта 2017	г. по	9 марта 2027	F. SA WALTHIN HATEHTY 4	THEIR
				РАЁСАТИ ФЕХРИСТХО	N HLO
				ДАВЛАТЙ В. НАШРИЕТ	A
			•	MUCHON + WAYCHON	mol
			¢.	NR.	
				PW	